基于半监督学习的团队运动合作动作分类

Q2 Computer Science
Z. Ziyi, K. Takeda, Keisuke Fujii
{"title":"基于半监督学习的团队运动合作动作分类","authors":"Z. Ziyi, K. Takeda, Keisuke Fujii","doi":"10.2478/ijcss-2022-0006","DOIUrl":null,"url":null,"abstract":"Abstract Classifying multi-agent cooperative behavior is a fundamental problem in various scientific and engineering domains. In team sports, many cooperative plays can be manually labelled by experts. However, it requires high labour costs and a large amount of unlabelled data is not utilised. This paper examines semi-supervised learning methods for the classification of strategic cooperative plays (called screen plays) in basketball using a smaller labelled dataset and a larger unlabelled dataset. We compared the classification performance of two basic semi-supervised learning methods: self-training and label-propagation. Results show that the classification performance of the semi-supervised learning approaches improved upon the conventional supervised approach (SVM: support vector machine) for minor types of screen-plays (flare, pin, back, cross, and hand-off screen). For the feature importance, we found that self-training obtained similar or higher Sharpley values than SVM. Our approach has the potential to reduce manual labelling costs for detecting various cooperative behaviors.","PeriodicalId":38466,"journal":{"name":"International Journal of Computer Science in Sport","volume":"21 1","pages":"111 - 121"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cooperative play classification in team sports via semi-supervised learning\",\"authors\":\"Z. Ziyi, K. Takeda, Keisuke Fujii\",\"doi\":\"10.2478/ijcss-2022-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Classifying multi-agent cooperative behavior is a fundamental problem in various scientific and engineering domains. In team sports, many cooperative plays can be manually labelled by experts. However, it requires high labour costs and a large amount of unlabelled data is not utilised. This paper examines semi-supervised learning methods for the classification of strategic cooperative plays (called screen plays) in basketball using a smaller labelled dataset and a larger unlabelled dataset. We compared the classification performance of two basic semi-supervised learning methods: self-training and label-propagation. Results show that the classification performance of the semi-supervised learning approaches improved upon the conventional supervised approach (SVM: support vector machine) for minor types of screen-plays (flare, pin, back, cross, and hand-off screen). For the feature importance, we found that self-training obtained similar or higher Sharpley values than SVM. Our approach has the potential to reduce manual labelling costs for detecting various cooperative behaviors.\",\"PeriodicalId\":38466,\"journal\":{\"name\":\"International Journal of Computer Science in Sport\",\"volume\":\"21 1\",\"pages\":\"111 - 121\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Science in Sport\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ijcss-2022-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Science in Sport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ijcss-2022-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

多智能体合作行为分类是各个科学和工程领域的基本问题。在团队运动中,许多合作动作可以由专家手动标记。然而,它需要高昂的劳动力成本,并且没有利用大量未标记的数据。本文使用较小的标记数据集和较大的未标记数据集研究了半监督学习方法,用于对篮球中的战略合作战术(称为屏幕战术)进行分类。我们比较了两种基本的半监督学习方法:自训练和标签传播的分类性能。结果表明,半监督学习方法的分类性能优于传统的监督方法(SVM:支持向量机),用于较小类型的屏幕剧本(耀斑,pin,背,交叉和切换屏幕)。对于特征重要性,我们发现自训练得到的Sharpley值与SVM相似或更高。我们的方法有可能降低检测各种合作行为的人工标记成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cooperative play classification in team sports via semi-supervised learning
Abstract Classifying multi-agent cooperative behavior is a fundamental problem in various scientific and engineering domains. In team sports, many cooperative plays can be manually labelled by experts. However, it requires high labour costs and a large amount of unlabelled data is not utilised. This paper examines semi-supervised learning methods for the classification of strategic cooperative plays (called screen plays) in basketball using a smaller labelled dataset and a larger unlabelled dataset. We compared the classification performance of two basic semi-supervised learning methods: self-training and label-propagation. Results show that the classification performance of the semi-supervised learning approaches improved upon the conventional supervised approach (SVM: support vector machine) for minor types of screen-plays (flare, pin, back, cross, and hand-off screen). For the feature importance, we found that self-training obtained similar or higher Sharpley values than SVM. Our approach has the potential to reduce manual labelling costs for detecting various cooperative behaviors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Science in Sport
International Journal of Computer Science in Sport Computer Science-Computer Science (all)
CiteScore
2.20
自引率
0.00%
发文量
4
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信