四维几乎厄米流形上的第二陈-爱因斯坦度量

IF 0.5 Q3 MATHEMATICS
G. Barbaro, Mehdi Lejmi
{"title":"四维几乎厄米流形上的第二陈-爱因斯坦度量","authors":"G. Barbaro, Mehdi Lejmi","doi":"10.1515/coma-2022-0150","DOIUrl":null,"url":null,"abstract":"Abstract We study four-dimensional second Chern-Einstein almost-Hermitian manifolds. In the compact case, we observe that under a certain hypothesis, the Riemannian dual of the Lee form is a Killing vector field. We use that observation to describe four-dimensional compact second Chern-Einstein locally conformally symplectic manifolds, and we give some examples of such manifolds. Finally, we study the second Chern-Einstein problem on unimodular almost-abelian Lie algebras, classifying those that admit a left-invariant second Chern-Einstein metric with a parallel non-zero Lee form.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Second Chern-Einstein metrics on four-dimensional almost-Hermitian manifolds\",\"authors\":\"G. Barbaro, Mehdi Lejmi\",\"doi\":\"10.1515/coma-2022-0150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study four-dimensional second Chern-Einstein almost-Hermitian manifolds. In the compact case, we observe that under a certain hypothesis, the Riemannian dual of the Lee form is a Killing vector field. We use that observation to describe four-dimensional compact second Chern-Einstein locally conformally symplectic manifolds, and we give some examples of such manifolds. Finally, we study the second Chern-Einstein problem on unimodular almost-abelian Lie algebras, classifying those that admit a left-invariant second Chern-Einstein metric with a parallel non-zero Lee form.\",\"PeriodicalId\":42393,\"journal\":{\"name\":\"Complex Manifolds\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/coma-2022-0150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2022-0150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要研究了四维第二陈-爱因斯坦几乎厄米流形。在紧化情况下,我们观察到在一定的假设下,李氏形式的黎曼对偶是一个消灭向量场。我们利用这一观察结果描述了四维紧致第二陈-爱因斯坦局部共形辛流形,并给出了这种流形的一些例子。最后,我们研究了单模几乎阿贝尔李代数上的第二陈-爱因斯坦问题,并对具有平行非零李形式的左不变第二陈-爱因斯坦度量进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Second Chern-Einstein metrics on four-dimensional almost-Hermitian manifolds
Abstract We study four-dimensional second Chern-Einstein almost-Hermitian manifolds. In the compact case, we observe that under a certain hypothesis, the Riemannian dual of the Lee form is a Killing vector field. We use that observation to describe four-dimensional compact second Chern-Einstein locally conformally symplectic manifolds, and we give some examples of such manifolds. Finally, we study the second Chern-Einstein problem on unimodular almost-abelian Lie algebras, classifying those that admit a left-invariant second Chern-Einstein metric with a parallel non-zero Lee form.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex Manifolds
Complex Manifolds MATHEMATICS-
CiteScore
1.30
自引率
20.00%
发文量
14
审稿时长
25 weeks
期刊介绍: Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信