关于某些广义曲率张量的一个注记

IF 0.4 Q4 MATHEMATICS
R. Deszcz, M. Glogowska, Marian Hotlo's, Miroslava Petrovi'c-Torgavsev, G. Zafindratafa
{"title":"关于某些广义曲率张量的一个注记","authors":"R. Deszcz, M. Glogowska, Marian Hotlo's, Miroslava Petrovi'c-Torgavsev, G. Zafindratafa","doi":"10.36890/iejg.1273631","DOIUrl":null,"url":null,"abstract":"For any semi-Riemannian manifold (M, g) we define some generalized curvature tensor E as a linear combination of Kulkarni-Nomizu products formed by the metric tensor, the Ricci tensor and its square of given manifold. That tensor is closely related to quasi-Einstein spaces, Roter spaces and some Roter type spaces.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Note on Some Generalized Curvature Tensor\",\"authors\":\"R. Deszcz, M. Glogowska, Marian Hotlo's, Miroslava Petrovi'c-Torgavsev, G. Zafindratafa\",\"doi\":\"10.36890/iejg.1273631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any semi-Riemannian manifold (M, g) we define some generalized curvature tensor E as a linear combination of Kulkarni-Nomizu products formed by the metric tensor, the Ricci tensor and its square of given manifold. That tensor is closely related to quasi-Einstein spaces, Roter spaces and some Roter type spaces.\",\"PeriodicalId\":43768,\"journal\":{\"name\":\"International Electronic Journal of Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36890/iejg.1273631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.1273631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

对于任意半黎曼流形(M, g),我们将广义曲率张量E定义为由给定流形的度规张量、里奇张量及其平方构成的Kulkarni-Nomizu积的线性组合。这个张量与准爱因斯坦空间,罗特空间和一些罗特型空间密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on Some Generalized Curvature Tensor
For any semi-Riemannian manifold (M, g) we define some generalized curvature tensor E as a linear combination of Kulkarni-Nomizu products formed by the metric tensor, the Ricci tensor and its square of given manifold. That tensor is closely related to quasi-Einstein spaces, Roter spaces and some Roter type spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信