含废料绿色砂浆的性能评价

Q4 Earth and Planetary Sciences
Rana Shamseldeeen Fakhri, Eethar Thanoon Dawood
{"title":"含废料绿色砂浆的性能评价","authors":"Rana Shamseldeeen Fakhri, Eethar Thanoon Dawood","doi":"10.11113/aej.v13.18986","DOIUrl":null,"url":null,"abstract":"The accumulation of massive waste has impacted human health and the city's appearance. As a result, there was a need to reduce waste by using by-products from industrial waste to replace cement, such as limestone, fly ash, silica fume, steel slag, and other minerals known as supplementary cementitious materials are produced environmentally and sustainably. This paper's purpose is to design a green mortar with the highest possible replacement of cement that has acceptable fresh and hardened characteristics. In this paper, three (SCMs), such as limestone powder (10%), calcined clay (0–35%), and slag (0–30%), were used to prepare ternary mixtures. The materials used in this research are available locally in Mosul, Iraq. The experimental studies were carried out for twelve mixes. The tests of flowability, flexural strength, compressive strength, dry density, ultrasonic pulse velocity, and water absorption on green mortar have been conducted. The cement was replaced 30% to 60% with a combination of ternary cement containing calcined clay, limestone, and slag in different replacement percentages than in other green mortar mixes. The results found that replacing OPC (30%), which contains 10% limestone, 10% steel slag, and 10% calcined clay, gives the highest compressive strength and flexure strength enhancement, which are 24% and 18% greater than the plain mortar after 28 days. When cement replacement was increased for ternary mixes, the result differed slightly from the plain mortar. Water absorption increased as the SCMs were increased. Dry density showed little effect.","PeriodicalId":36749,"journal":{"name":"ASEAN Engineering Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PROPERTIES EVALUATION OF GREEN MORTAR CONTAINING WASTE MATERIALS\",\"authors\":\"Rana Shamseldeeen Fakhri, Eethar Thanoon Dawood\",\"doi\":\"10.11113/aej.v13.18986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accumulation of massive waste has impacted human health and the city's appearance. As a result, there was a need to reduce waste by using by-products from industrial waste to replace cement, such as limestone, fly ash, silica fume, steel slag, and other minerals known as supplementary cementitious materials are produced environmentally and sustainably. This paper's purpose is to design a green mortar with the highest possible replacement of cement that has acceptable fresh and hardened characteristics. In this paper, three (SCMs), such as limestone powder (10%), calcined clay (0–35%), and slag (0–30%), were used to prepare ternary mixtures. The materials used in this research are available locally in Mosul, Iraq. The experimental studies were carried out for twelve mixes. The tests of flowability, flexural strength, compressive strength, dry density, ultrasonic pulse velocity, and water absorption on green mortar have been conducted. The cement was replaced 30% to 60% with a combination of ternary cement containing calcined clay, limestone, and slag in different replacement percentages than in other green mortar mixes. The results found that replacing OPC (30%), which contains 10% limestone, 10% steel slag, and 10% calcined clay, gives the highest compressive strength and flexure strength enhancement, which are 24% and 18% greater than the plain mortar after 28 days. When cement replacement was increased for ternary mixes, the result differed slightly from the plain mortar. Water absorption increased as the SCMs were increased. Dry density showed little effect.\",\"PeriodicalId\":36749,\"journal\":{\"name\":\"ASEAN Engineering Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASEAN Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/aej.v13.18986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEAN Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/aej.v13.18986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

大量垃圾的堆积已经影响了人类健康和城市面貌。因此,有必要通过使用工业废料的副产品来代替水泥来减少浪费,例如石灰石、粉煤灰、硅灰、钢渣和其他被称为补充胶凝材料的矿物是环保和可持续生产的。本文的目的是设计一种绿色砂浆,尽可能替代具有可接受的新鲜和硬化特性的水泥。本文采用石灰石粉(10%)、煅烧粘土(0-35%)和矿渣(0-30%)三种(SCMs)制备三元混合物。本研究中使用的材料可以在伊拉克摩苏尔当地获得。对12种混合料进行了试验研究。对生坯砂浆进行了流动性、抗折强度、抗压强度、干密度、超声脉冲速度、吸水率等试验。将30% - 60%的水泥替换为含有煅烧粘土、石灰石和矿渣的三元水泥,其替代百分比与其他绿色砂浆混合物不同。结果发现,将含有10%石灰石、10%钢渣和10%煅烧粘土的OPC(30%)替代28天后,其抗压强度和抗折强度分别比普通砂浆提高24%和18%,达到最高水平。当三元混合料的水泥置换量增加时,结果与普通砂浆略有不同。吸水率随粒径的增加而增加。干密度影响不大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PROPERTIES EVALUATION OF GREEN MORTAR CONTAINING WASTE MATERIALS
The accumulation of massive waste has impacted human health and the city's appearance. As a result, there was a need to reduce waste by using by-products from industrial waste to replace cement, such as limestone, fly ash, silica fume, steel slag, and other minerals known as supplementary cementitious materials are produced environmentally and sustainably. This paper's purpose is to design a green mortar with the highest possible replacement of cement that has acceptable fresh and hardened characteristics. In this paper, three (SCMs), such as limestone powder (10%), calcined clay (0–35%), and slag (0–30%), were used to prepare ternary mixtures. The materials used in this research are available locally in Mosul, Iraq. The experimental studies were carried out for twelve mixes. The tests of flowability, flexural strength, compressive strength, dry density, ultrasonic pulse velocity, and water absorption on green mortar have been conducted. The cement was replaced 30% to 60% with a combination of ternary cement containing calcined clay, limestone, and slag in different replacement percentages than in other green mortar mixes. The results found that replacing OPC (30%), which contains 10% limestone, 10% steel slag, and 10% calcined clay, gives the highest compressive strength and flexure strength enhancement, which are 24% and 18% greater than the plain mortar after 28 days. When cement replacement was increased for ternary mixes, the result differed slightly from the plain mortar. Water absorption increased as the SCMs were increased. Dry density showed little effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ASEAN Engineering Journal
ASEAN Engineering Journal Engineering-Engineering (all)
CiteScore
0.60
自引率
0.00%
发文量
75
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信