有界域上有色噪声驱动的随机分数阶拉普拉斯方程及其协方差泛函

Pub Date : 2022-03-16 DOI:10.1080/15326349.2022.2045205
Nicolás Piña, T. Caraballo, E. Porcu
{"title":"有界域上有色噪声驱动的随机分数阶拉普拉斯方程及其协方差泛函","authors":"Nicolás Piña, T. Caraballo, E. Porcu","doi":"10.1080/15326349.2022.2045205","DOIUrl":null,"url":null,"abstract":"Abstract The paper provides conditions for the fractional Laplacian and its spectral representation on stationary Gaussian random fields to be well-defined. In addition, we study existence and uniqueness of the weak solution for a stochastic fractional elliptic equation driven by an additive colored noise over an open bounded set. Both spectral and variational approaches are used to provide a solution. Further, the functional covariance associated with the solution is derived.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stochastic fractional Laplace equation driven by colored noise on bounded domain, and its covariance functional\",\"authors\":\"Nicolás Piña, T. Caraballo, E. Porcu\",\"doi\":\"10.1080/15326349.2022.2045205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper provides conditions for the fractional Laplacian and its spectral representation on stationary Gaussian random fields to be well-defined. In addition, we study existence and uniqueness of the weak solution for a stochastic fractional elliptic equation driven by an additive colored noise over an open bounded set. Both spectral and variational approaches are used to provide a solution. Further, the functional covariance associated with the solution is derived.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/15326349.2022.2045205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/15326349.2022.2045205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文给出了平稳高斯随机场上分数拉普拉斯算子及其谱表示被定义的条件。此外,我们还研究了开有界集上加性有色噪声驱动的随机分数椭圆方程弱解的存在性和唯一性。谱方法和变分方法都用于提供解决方案。此外,导出了与该解相关联的函数协方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A stochastic fractional Laplace equation driven by colored noise on bounded domain, and its covariance functional
Abstract The paper provides conditions for the fractional Laplacian and its spectral representation on stationary Gaussian random fields to be well-defined. In addition, we study existence and uniqueness of the weak solution for a stochastic fractional elliptic equation driven by an additive colored noise over an open bounded set. Both spectral and variational approaches are used to provide a solution. Further, the functional covariance associated with the solution is derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信