N. Rafatimaleki, M. Rostamy-Malkhalifeh, F. Hosseinzadeh lotfi
{"title":"用线性独立向量求出具有恒定回报的生产可能性集的强定义超平面","authors":"N. Rafatimaleki, M. Rostamy-Malkhalifeh, F. Hosseinzadeh lotfi","doi":"10.1080/23311835.2018.1447222","DOIUrl":null,"url":null,"abstract":"Abstract Production Possibility Set (PPS) is defined as the set of all inputs and outputs of a system in which inputs can produce outputs. In Data Envelopment Analysis (DEA), it is highly important to identify the defining hyperplanes and especially the strong defining hyperplanes of the empirical PPS. Although DEA models can determine the efficiency of a Decision Making Unit (DMU), but they cannot present efficient frontiers of PPS. In this paper, we propose a new method to determine all strong efficient (Pareto-efficient) DMUs and strong defining hyperplanes of the PPS with constant returns to scale including the Pareto-efficient DMUs. Furthermore, we apply the newly proposed method to find the normal vectors or gradient of the strong defining hyperplanes of the PPS including strong efficient DMUs which are under evaluation. Consequently, the equations of these hyperplanes are determined. To illustrate the applicability of the proposed method, some numerical examples are finally provided. Our method can be easily implemented using existing packages for operation research, such as GAMS.","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23311835.2018.1447222","citationCount":"0","resultStr":"{\"title\":\"Finding the strong defining hyperplanes of production possibility set with constant returns to scale using the linear independent vectors\",\"authors\":\"N. Rafatimaleki, M. Rostamy-Malkhalifeh, F. Hosseinzadeh lotfi\",\"doi\":\"10.1080/23311835.2018.1447222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Production Possibility Set (PPS) is defined as the set of all inputs and outputs of a system in which inputs can produce outputs. In Data Envelopment Analysis (DEA), it is highly important to identify the defining hyperplanes and especially the strong defining hyperplanes of the empirical PPS. Although DEA models can determine the efficiency of a Decision Making Unit (DMU), but they cannot present efficient frontiers of PPS. In this paper, we propose a new method to determine all strong efficient (Pareto-efficient) DMUs and strong defining hyperplanes of the PPS with constant returns to scale including the Pareto-efficient DMUs. Furthermore, we apply the newly proposed method to find the normal vectors or gradient of the strong defining hyperplanes of the PPS including strong efficient DMUs which are under evaluation. Consequently, the equations of these hyperplanes are determined. To illustrate the applicability of the proposed method, some numerical examples are finally provided. Our method can be easily implemented using existing packages for operation research, such as GAMS.\",\"PeriodicalId\":92618,\"journal\":{\"name\":\"Cogent mathematics & statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23311835.2018.1447222\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent mathematics & statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23311835.2018.1447222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311835.2018.1447222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Finding the strong defining hyperplanes of production possibility set with constant returns to scale using the linear independent vectors
Abstract Production Possibility Set (PPS) is defined as the set of all inputs and outputs of a system in which inputs can produce outputs. In Data Envelopment Analysis (DEA), it is highly important to identify the defining hyperplanes and especially the strong defining hyperplanes of the empirical PPS. Although DEA models can determine the efficiency of a Decision Making Unit (DMU), but they cannot present efficient frontiers of PPS. In this paper, we propose a new method to determine all strong efficient (Pareto-efficient) DMUs and strong defining hyperplanes of the PPS with constant returns to scale including the Pareto-efficient DMUs. Furthermore, we apply the newly proposed method to find the normal vectors or gradient of the strong defining hyperplanes of the PPS including strong efficient DMUs which are under evaluation. Consequently, the equations of these hyperplanes are determined. To illustrate the applicability of the proposed method, some numerical examples are finally provided. Our method can be easily implemented using existing packages for operation research, such as GAMS.