Jing-Ye Tee, Fong-Lee Ng, Fiona Seh-Lin Keng, G. Gnana kumar, Siew-Moi Phang
{"title":"氧化石墨烯的微生物还原及其在微生物燃料电池和生物光伏中的应用","authors":"Jing-Ye Tee, Fong-Lee Ng, Fiona Seh-Lin Keng, G. Gnana kumar, Siew-Moi Phang","doi":"10.1007/s11706-023-0642-z","DOIUrl":null,"url":null,"abstract":"<div><p>Despite more than a decade of study, there are still significant obstacles to overcome before graphene can be successfully produced on a large scale for commercial use. Chemical oxidation of graphite to produce graphene oxide (GO), followed by a subsequent reduction process to synthesize reduced graphene oxide (rGO), is considered the most practical method for mass production. Microorganisms, which are abundant in nature and inexpensive, are one of the potential green reductants for rGO synthesis. However, there is no recent review discussing the reported microbial reduction of GO in detail. To address this, we present a comprehensive review on the reduction of GO by a range of microorganisms and compared their efficacies and reaction conditions. Also, presented were the mechanisms by which microorganisms reduce GO. We also reviewed the recent advancements in using microbially reduced GO as the anode and cathode material in the microbial fuel cell (MFC) and algal biophotovoltaics (BPV), as well as the challenges and future directions in microbial fuel cell research.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial reduction of graphene oxide and its application in microbial fuel cells and biophotovoltaics\",\"authors\":\"Jing-Ye Tee, Fong-Lee Ng, Fiona Seh-Lin Keng, G. Gnana kumar, Siew-Moi Phang\",\"doi\":\"10.1007/s11706-023-0642-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite more than a decade of study, there are still significant obstacles to overcome before graphene can be successfully produced on a large scale for commercial use. Chemical oxidation of graphite to produce graphene oxide (GO), followed by a subsequent reduction process to synthesize reduced graphene oxide (rGO), is considered the most practical method for mass production. Microorganisms, which are abundant in nature and inexpensive, are one of the potential green reductants for rGO synthesis. However, there is no recent review discussing the reported microbial reduction of GO in detail. To address this, we present a comprehensive review on the reduction of GO by a range of microorganisms and compared their efficacies and reaction conditions. Also, presented were the mechanisms by which microorganisms reduce GO. We also reviewed the recent advancements in using microbially reduced GO as the anode and cathode material in the microbial fuel cell (MFC) and algal biophotovoltaics (BPV), as well as the challenges and future directions in microbial fuel cell research.</p></div>\",\"PeriodicalId\":572,\"journal\":{\"name\":\"Frontiers of Materials Science\",\"volume\":\"17 2\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11706-023-0642-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-023-0642-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microbial reduction of graphene oxide and its application in microbial fuel cells and biophotovoltaics
Despite more than a decade of study, there are still significant obstacles to overcome before graphene can be successfully produced on a large scale for commercial use. Chemical oxidation of graphite to produce graphene oxide (GO), followed by a subsequent reduction process to synthesize reduced graphene oxide (rGO), is considered the most practical method for mass production. Microorganisms, which are abundant in nature and inexpensive, are one of the potential green reductants for rGO synthesis. However, there is no recent review discussing the reported microbial reduction of GO in detail. To address this, we present a comprehensive review on the reduction of GO by a range of microorganisms and compared their efficacies and reaction conditions. Also, presented were the mechanisms by which microorganisms reduce GO. We also reviewed the recent advancements in using microbially reduced GO as the anode and cathode material in the microbial fuel cell (MFC) and algal biophotovoltaics (BPV), as well as the challenges and future directions in microbial fuel cell research.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.