{"title":"复环面商的数值表征","authors":"B. Claudon, Patrick Graf, Henri Guenancia","doi":"10.4171/cmh/543","DOIUrl":null,"url":null,"abstract":". This article gives a characterization of quotients of complex tori by finite groups acting freely in codimension two in terms of a numerical vanishing condition on the first and second Chern class. This generalizes results previously obtained by Greb–Kebekus–Peternell in the projective setting, and by Kirschner and the second author in dimension three. As a key ingredient to the proof, we obtain a version of the Bogomolov–Gieseker inequality for stable sheaves on singular spaces, including a discussion of the case of equality.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Numerical characterization of complex torus quotients\",\"authors\":\"B. Claudon, Patrick Graf, Henri Guenancia\",\"doi\":\"10.4171/cmh/543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This article gives a characterization of quotients of complex tori by finite groups acting freely in codimension two in terms of a numerical vanishing condition on the first and second Chern class. This generalizes results previously obtained by Greb–Kebekus–Peternell in the projective setting, and by Kirschner and the second author in dimension three. As a key ingredient to the proof, we obtain a version of the Bogomolov–Gieseker inequality for stable sheaves on singular spaces, including a discussion of the case of equality.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/cmh/543\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/543","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Numerical characterization of complex torus quotients
. This article gives a characterization of quotients of complex tori by finite groups acting freely in codimension two in terms of a numerical vanishing condition on the first and second Chern class. This generalizes results previously obtained by Greb–Kebekus–Peternell in the projective setting, and by Kirschner and the second author in dimension three. As a key ingredient to the proof, we obtain a version of the Bogomolov–Gieseker inequality for stable sheaves on singular spaces, including a discussion of the case of equality.
期刊介绍:
Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals.
Commentarii Mathematici Helvetici is covered in:
Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.