D. Sapienza, D. Paganelli, M. Prato, M. Bertogna, Matteo Spallanzani
{"title":"汽车操纵性能的深度学习辅助分析","authors":"D. Sapienza, D. Paganelli, M. Prato, M. Bertogna, Matteo Spallanzani","doi":"10.2478/caim-2022-0007","DOIUrl":null,"url":null,"abstract":"Abstract The luxury car market has demanding product development standards aimed at providing state-of-the-art features in the automotive domain. Handling performance is amongst the most important properties that must be assessed when developing a new car model. In this work, we analyse the problem of predicting subjective evaluations of automobiles handling performances from objective records of driving sessions. A record is a multi-dimensional time series describing the temporal evolution of the mechanical state of an automobile. A categorical variable quantifies the evaluations of handling properties. We describe an original deep learning system, featuring a denoising autoencoder and hierarchical attention mechanisms, that we designed to solve this task. Attention mechanisms intrinsically compute probability distributions over their inputs’ components. Combining this feature with the saliency maps technique, our system can compute heatmaps that provide a visual aid to identify the physical events conditioning its predictions.","PeriodicalId":37903,"journal":{"name":"Communications in Applied and Industrial Mathematics","volume":"13 1","pages":"78 - 95"},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning-assisted analysis of automobiles handling performances\",\"authors\":\"D. Sapienza, D. Paganelli, M. Prato, M. Bertogna, Matteo Spallanzani\",\"doi\":\"10.2478/caim-2022-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The luxury car market has demanding product development standards aimed at providing state-of-the-art features in the automotive domain. Handling performance is amongst the most important properties that must be assessed when developing a new car model. In this work, we analyse the problem of predicting subjective evaluations of automobiles handling performances from objective records of driving sessions. A record is a multi-dimensional time series describing the temporal evolution of the mechanical state of an automobile. A categorical variable quantifies the evaluations of handling properties. We describe an original deep learning system, featuring a denoising autoencoder and hierarchical attention mechanisms, that we designed to solve this task. Attention mechanisms intrinsically compute probability distributions over their inputs’ components. Combining this feature with the saliency maps technique, our system can compute heatmaps that provide a visual aid to identify the physical events conditioning its predictions.\",\"PeriodicalId\":37903,\"journal\":{\"name\":\"Communications in Applied and Industrial Mathematics\",\"volume\":\"13 1\",\"pages\":\"78 - 95\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/caim-2022-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/caim-2022-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Deep learning-assisted analysis of automobiles handling performances
Abstract The luxury car market has demanding product development standards aimed at providing state-of-the-art features in the automotive domain. Handling performance is amongst the most important properties that must be assessed when developing a new car model. In this work, we analyse the problem of predicting subjective evaluations of automobiles handling performances from objective records of driving sessions. A record is a multi-dimensional time series describing the temporal evolution of the mechanical state of an automobile. A categorical variable quantifies the evaluations of handling properties. We describe an original deep learning system, featuring a denoising autoencoder and hierarchical attention mechanisms, that we designed to solve this task. Attention mechanisms intrinsically compute probability distributions over their inputs’ components. Combining this feature with the saliency maps technique, our system can compute heatmaps that provide a visual aid to identify the physical events conditioning its predictions.
期刊介绍:
Communications in Applied and Industrial Mathematics (CAIM) is one of the official journals of the Italian Society for Applied and Industrial Mathematics (SIMAI). Providing immediate open access to original, unpublished high quality contributions, CAIM is devoted to timely report on ongoing original research work, new interdisciplinary subjects, and new developments. The journal focuses on the applications of mathematics to the solution of problems in industry, technology, environment, cultural heritage, and natural sciences, with a special emphasis on new and interesting mathematical ideas relevant to these fields of application . Encouraging novel cross-disciplinary approaches to mathematical research, CAIM aims to provide an ideal platform for scientists who cooperate in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, medicine and to link scientist with professionals active in industry, research centres, academia or in the public sector. Coverage includes research articles describing new analytical or numerical methods, descriptions of modelling approaches, simulations for more accurate predictions or experimental observations of complex phenomena, verification/validation of numerical and experimental methods; invited or submitted reviews and perspectives concerning mathematical techniques in relation to applications, and and fields in which new problems have arisen for which mathematical models and techniques are not yet available.