基于高光谱技术的土壤全氮含量快速检测

IF 7.7 Q1 AGRICULTURE, MULTIDISCIPLINARY
Jingjing Ma , Jin Cheng , Jinghua Wang , Ruoqian Pan , Fang He , Lei Yan , Jiang Xiao
{"title":"基于高光谱技术的土壤全氮含量快速检测","authors":"Jingjing Ma ,&nbsp;Jin Cheng ,&nbsp;Jinghua Wang ,&nbsp;Ruoqian Pan ,&nbsp;Fang He ,&nbsp;Lei Yan ,&nbsp;Jiang Xiao","doi":"10.1016/j.inpa.2021.06.005","DOIUrl":null,"url":null,"abstract":"<div><p>Soil total nitrogen content (TN) is a crucial factor in boosting the growth of crops. Its surplus or scarcity will alter the quality and yield of crops to a certain extent. Traditional methods such as chemical analysis is complicated, laborious and time-consuming. A faster and more efficient method to detect TN should be explored to address this problem. The hyperspectral technology integrates conventional energy and spectroscopy which aids in the simultaneous collection of spatial and spectral information from an object. It has gradually proved its significance and gained popularity in the analysis of soil composition. This study discussed the possibility of using hyperspectral technology to detect TN, analyzed six spectral data preprocessing methods and five modeling methods: partial least squares (PLS), back-propagation (BP) neural network, radial basis function (RBF) neural network, extreme learning machine (ELM) and support vector regression (SVR) with evaluation index R<sup>2</sup> and RMSE. Setting the content of chemical analysis as the control and comparing the errors from spectral analysis. According to the results, all five models can be used for TN detection, and the SVR model with R<sup>2</sup> 0.912 1 and RMSE 0.758 1 turned to the best method. The study showed that the spectral model can detect TN quickly, providing a reference for the detection of elements in soil with favorable research significance.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"9 4","pages":"Pages 566-574"},"PeriodicalIF":7.7000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.inpa.2021.06.005","citationCount":"7","resultStr":"{\"title\":\"Rapid detection of total nitrogen content in soil based on hyperspectral technology\",\"authors\":\"Jingjing Ma ,&nbsp;Jin Cheng ,&nbsp;Jinghua Wang ,&nbsp;Ruoqian Pan ,&nbsp;Fang He ,&nbsp;Lei Yan ,&nbsp;Jiang Xiao\",\"doi\":\"10.1016/j.inpa.2021.06.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Soil total nitrogen content (TN) is a crucial factor in boosting the growth of crops. Its surplus or scarcity will alter the quality and yield of crops to a certain extent. Traditional methods such as chemical analysis is complicated, laborious and time-consuming. A faster and more efficient method to detect TN should be explored to address this problem. The hyperspectral technology integrates conventional energy and spectroscopy which aids in the simultaneous collection of spatial and spectral information from an object. It has gradually proved its significance and gained popularity in the analysis of soil composition. This study discussed the possibility of using hyperspectral technology to detect TN, analyzed six spectral data preprocessing methods and five modeling methods: partial least squares (PLS), back-propagation (BP) neural network, radial basis function (RBF) neural network, extreme learning machine (ELM) and support vector regression (SVR) with evaluation index R<sup>2</sup> and RMSE. Setting the content of chemical analysis as the control and comparing the errors from spectral analysis. According to the results, all five models can be used for TN detection, and the SVR model with R<sup>2</sup> 0.912 1 and RMSE 0.758 1 turned to the best method. The study showed that the spectral model can detect TN quickly, providing a reference for the detection of elements in soil with favorable research significance.</p></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":\"9 4\",\"pages\":\"Pages 566-574\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.inpa.2021.06.005\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317321000548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317321000548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

摘要

土壤全氮含量(TN)是促进作物生长的关键因素。它的过剩或短缺会在一定程度上改变作物的质量和产量。化学分析等传统方法复杂、费力、耗时。为了解决这一问题,应该探索一种更快、更有效的检测总氮的方法。高光谱技术集成了传统的能量和光谱学,有助于同时收集物体的空间和光谱信息。它在土壤成分分析中的重要性逐渐得到证明和普及。本研究探讨了利用高光谱技术检测TN的可能性,分析了6种光谱数据预处理方法和5种建模方法:偏最小二乘(PLS)、反向传播(BP)神经网络、径向基函数(RBF)神经网络、极限学习机(ELM)和基于评价指标R2和RMSE的支持向量回归(SVR)。以化学分析的含量为对照,比较光谱分析的误差。结果表明,5种模型均可用于TN检测,其中R2为0.912 1,RMSE为0.758 1的SVR模型为最佳方法。研究表明,该光谱模型能够快速检测TN,为土壤中元素的检测提供参考,具有良好的研究意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid detection of total nitrogen content in soil based on hyperspectral technology

Soil total nitrogen content (TN) is a crucial factor in boosting the growth of crops. Its surplus or scarcity will alter the quality and yield of crops to a certain extent. Traditional methods such as chemical analysis is complicated, laborious and time-consuming. A faster and more efficient method to detect TN should be explored to address this problem. The hyperspectral technology integrates conventional energy and spectroscopy which aids in the simultaneous collection of spatial and spectral information from an object. It has gradually proved its significance and gained popularity in the analysis of soil composition. This study discussed the possibility of using hyperspectral technology to detect TN, analyzed six spectral data preprocessing methods and five modeling methods: partial least squares (PLS), back-propagation (BP) neural network, radial basis function (RBF) neural network, extreme learning machine (ELM) and support vector regression (SVR) with evaluation index R2 and RMSE. Setting the content of chemical analysis as the control and comparing the errors from spectral analysis. According to the results, all five models can be used for TN detection, and the SVR model with R2 0.912 1 and RMSE 0.758 1 turned to the best method. The study showed that the spectral model can detect TN quickly, providing a reference for the detection of elements in soil with favorable research significance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing in Agriculture
Information Processing in Agriculture Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
21.10
自引率
0.00%
发文量
80
期刊介绍: Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信