Jingjing Ma , Jin Cheng , Jinghua Wang , Ruoqian Pan , Fang He , Lei Yan , Jiang Xiao
{"title":"基于高光谱技术的土壤全氮含量快速检测","authors":"Jingjing Ma , Jin Cheng , Jinghua Wang , Ruoqian Pan , Fang He , Lei Yan , Jiang Xiao","doi":"10.1016/j.inpa.2021.06.005","DOIUrl":null,"url":null,"abstract":"<div><p>Soil total nitrogen content (TN) is a crucial factor in boosting the growth of crops. Its surplus or scarcity will alter the quality and yield of crops to a certain extent. Traditional methods such as chemical analysis is complicated, laborious and time-consuming. A faster and more efficient method to detect TN should be explored to address this problem. The hyperspectral technology integrates conventional energy and spectroscopy which aids in the simultaneous collection of spatial and spectral information from an object. It has gradually proved its significance and gained popularity in the analysis of soil composition. This study discussed the possibility of using hyperspectral technology to detect TN, analyzed six spectral data preprocessing methods and five modeling methods: partial least squares (PLS), back-propagation (BP) neural network, radial basis function (RBF) neural network, extreme learning machine (ELM) and support vector regression (SVR) with evaluation index R<sup>2</sup> and RMSE. Setting the content of chemical analysis as the control and comparing the errors from spectral analysis. According to the results, all five models can be used for TN detection, and the SVR model with R<sup>2</sup> 0.912 1 and RMSE 0.758 1 turned to the best method. The study showed that the spectral model can detect TN quickly, providing a reference for the detection of elements in soil with favorable research significance.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"9 4","pages":"Pages 566-574"},"PeriodicalIF":7.7000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.inpa.2021.06.005","citationCount":"7","resultStr":"{\"title\":\"Rapid detection of total nitrogen content in soil based on hyperspectral technology\",\"authors\":\"Jingjing Ma , Jin Cheng , Jinghua Wang , Ruoqian Pan , Fang He , Lei Yan , Jiang Xiao\",\"doi\":\"10.1016/j.inpa.2021.06.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Soil total nitrogen content (TN) is a crucial factor in boosting the growth of crops. Its surplus or scarcity will alter the quality and yield of crops to a certain extent. Traditional methods such as chemical analysis is complicated, laborious and time-consuming. A faster and more efficient method to detect TN should be explored to address this problem. The hyperspectral technology integrates conventional energy and spectroscopy which aids in the simultaneous collection of spatial and spectral information from an object. It has gradually proved its significance and gained popularity in the analysis of soil composition. This study discussed the possibility of using hyperspectral technology to detect TN, analyzed six spectral data preprocessing methods and five modeling methods: partial least squares (PLS), back-propagation (BP) neural network, radial basis function (RBF) neural network, extreme learning machine (ELM) and support vector regression (SVR) with evaluation index R<sup>2</sup> and RMSE. Setting the content of chemical analysis as the control and comparing the errors from spectral analysis. According to the results, all five models can be used for TN detection, and the SVR model with R<sup>2</sup> 0.912 1 and RMSE 0.758 1 turned to the best method. The study showed that the spectral model can detect TN quickly, providing a reference for the detection of elements in soil with favorable research significance.</p></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":\"9 4\",\"pages\":\"Pages 566-574\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.inpa.2021.06.005\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317321000548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317321000548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Rapid detection of total nitrogen content in soil based on hyperspectral technology
Soil total nitrogen content (TN) is a crucial factor in boosting the growth of crops. Its surplus or scarcity will alter the quality and yield of crops to a certain extent. Traditional methods such as chemical analysis is complicated, laborious and time-consuming. A faster and more efficient method to detect TN should be explored to address this problem. The hyperspectral technology integrates conventional energy and spectroscopy which aids in the simultaneous collection of spatial and spectral information from an object. It has gradually proved its significance and gained popularity in the analysis of soil composition. This study discussed the possibility of using hyperspectral technology to detect TN, analyzed six spectral data preprocessing methods and five modeling methods: partial least squares (PLS), back-propagation (BP) neural network, radial basis function (RBF) neural network, extreme learning machine (ELM) and support vector regression (SVR) with evaluation index R2 and RMSE. Setting the content of chemical analysis as the control and comparing the errors from spectral analysis. According to the results, all five models can be used for TN detection, and the SVR model with R2 0.912 1 and RMSE 0.758 1 turned to the best method. The study showed that the spectral model can detect TN quickly, providing a reference for the detection of elements in soil with favorable research significance.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining