广义相对论强能量条件下Boltzmann熵的位移凸性

IF 1.8 2区 数学 Q1 MATHEMATICS
R. McCann
{"title":"广义相对论强能量条件下Boltzmann熵的位移凸性","authors":"R. McCann","doi":"10.4310/cjm.2020.v8.n3.a4","DOIUrl":null,"url":null,"abstract":"On a Riemannian manifold, lower Ricci curvature bounds are known to be characterized by geodesic convexity properties of various entropies with respect to the Kantorovich-Rubinstein-Wasserstein square distance from optimal transportation. These notions also make sense in a (nonsmooth) metric measure setting, where they have found powerful applications. This article initiates the development of an analogous theory for lower Ricci curvature bounds in timelike directions on a (globally hyperbolic) Lorentzian manifold. In particular, we lift fractional powers of the Lorentz distance (a.k.a. time separation function) to probability measures on spacetime, and show the strong energy condition of Hawking and Penrose is equivalent to geodesic convexity of the Boltzmann-Shannon entropy there. This represents a significant first step towards a formulation of the strong energy condition and exploration of its consequences in nonsmooth spacetimes, and hints at new connections linking the theory of gravity to the second law of thermodynamics.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2018-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Displacement convexity of Boltzmann’s entropy characterizes the strong energy condition from general relativity\",\"authors\":\"R. McCann\",\"doi\":\"10.4310/cjm.2020.v8.n3.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On a Riemannian manifold, lower Ricci curvature bounds are known to be characterized by geodesic convexity properties of various entropies with respect to the Kantorovich-Rubinstein-Wasserstein square distance from optimal transportation. These notions also make sense in a (nonsmooth) metric measure setting, where they have found powerful applications. This article initiates the development of an analogous theory for lower Ricci curvature bounds in timelike directions on a (globally hyperbolic) Lorentzian manifold. In particular, we lift fractional powers of the Lorentz distance (a.k.a. time separation function) to probability measures on spacetime, and show the strong energy condition of Hawking and Penrose is equivalent to geodesic convexity of the Boltzmann-Shannon entropy there. This represents a significant first step towards a formulation of the strong energy condition and exploration of its consequences in nonsmooth spacetimes, and hints at new connections linking the theory of gravity to the second law of thermodynamics.\",\"PeriodicalId\":48573,\"journal\":{\"name\":\"Cambridge Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2018-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cambridge Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cjm.2020.v8.n3.a4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2020.v8.n3.a4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 34

摘要

在黎曼流形上,已知里奇曲率下界的特征是相对于最优运输的Kantorovich-Rubinstein-Wasserstein平方距离的各种熵的测地线凸性。这些概念在(非光滑的)度量设置中也有意义,它们已经找到了强大的应用。本文提出了在(全局双曲)洛伦兹流形上的类时方向上的下里奇曲率界的类似理论。特别地,我们将洛伦兹距离(即时间分离函数)的分数次幂提升到时空上的概率测度,并证明了霍金和彭罗斯的强能量条件等价于那里的波尔兹曼-香农熵的测地凸性。这代表了向强能量条件的公式和探索其在非光滑时空中的结果迈出的重要的第一步,并暗示了将引力理论与热力学第二定律联系起来的新联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Displacement convexity of Boltzmann’s entropy characterizes the strong energy condition from general relativity
On a Riemannian manifold, lower Ricci curvature bounds are known to be characterized by geodesic convexity properties of various entropies with respect to the Kantorovich-Rubinstein-Wasserstein square distance from optimal transportation. These notions also make sense in a (nonsmooth) metric measure setting, where they have found powerful applications. This article initiates the development of an analogous theory for lower Ricci curvature bounds in timelike directions on a (globally hyperbolic) Lorentzian manifold. In particular, we lift fractional powers of the Lorentz distance (a.k.a. time separation function) to probability measures on spacetime, and show the strong energy condition of Hawking and Penrose is equivalent to geodesic convexity of the Boltzmann-Shannon entropy there. This represents a significant first step towards a formulation of the strong energy condition and exploration of its consequences in nonsmooth spacetimes, and hints at new connections linking the theory of gravity to the second law of thermodynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信