N. Makhtar, J. Idris, M. Musa, Y. Andou, K. Hamid, S. W. Puasa, Rafidah Husen
{"title":"通过面心中心复合设计,在最佳pH和tpf投加量条件下,采用絮凝法去除渗滤液中的污染物","authors":"N. Makhtar, J. Idris, M. Musa, Y. Andou, K. Hamid, S. W. Puasa, Rafidah Husen","doi":"10.1111/wej.12846","DOIUrl":null,"url":null,"abstract":"The effect of the interaction factor between pH and dosage is important in leachate wastewater treatment. This study aims to remove leachate pollutants such as turbidity, total suspended solid (TSS), chemical oxygen demand (COD) and colour using simultaneous factors of plant‐based Tacca leontopetaloides biopolymer flocculant (TBPF) dosage and leachate pH. The flocculation process was carried out through jar test by applying the perikinetic theory and statical analysis (face‐centred central composite design). The results found that the optimum leachate pH and TBPF dosage were pH 3 and 150 mg/L, respectively. The highest removal of leachate pollutants reached up to 69% with a second‐order perikinetic model; R2 = 0.9545 and k = 9 × 10−6 L/mg/min were obtained. Simultaneous interaction factors between leachate pH and TBPF dosage on turbidity and TSS removal were found significant and hence can be applied in the actual leachate wastewater treatment industry, particularly at the primary stage using the proposed model.","PeriodicalId":23753,"journal":{"name":"Water and Environment Journal","volume":"37 1","pages":"412 - 427"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Removal of leachate pollutants using flocculation method at simultaneous factors of optimum pH and Tacca leontopetaloides biopolymer flocculant (TBPF) dosage via face‐centred central composite design\",\"authors\":\"N. Makhtar, J. Idris, M. Musa, Y. Andou, K. Hamid, S. W. Puasa, Rafidah Husen\",\"doi\":\"10.1111/wej.12846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of the interaction factor between pH and dosage is important in leachate wastewater treatment. This study aims to remove leachate pollutants such as turbidity, total suspended solid (TSS), chemical oxygen demand (COD) and colour using simultaneous factors of plant‐based Tacca leontopetaloides biopolymer flocculant (TBPF) dosage and leachate pH. The flocculation process was carried out through jar test by applying the perikinetic theory and statical analysis (face‐centred central composite design). The results found that the optimum leachate pH and TBPF dosage were pH 3 and 150 mg/L, respectively. The highest removal of leachate pollutants reached up to 69% with a second‐order perikinetic model; R2 = 0.9545 and k = 9 × 10−6 L/mg/min were obtained. Simultaneous interaction factors between leachate pH and TBPF dosage on turbidity and TSS removal were found significant and hence can be applied in the actual leachate wastewater treatment industry, particularly at the primary stage using the proposed model.\",\"PeriodicalId\":23753,\"journal\":{\"name\":\"Water and Environment Journal\",\"volume\":\"37 1\",\"pages\":\"412 - 427\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water and Environment Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/wej.12846\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water and Environment Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/wej.12846","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Removal of leachate pollutants using flocculation method at simultaneous factors of optimum pH and Tacca leontopetaloides biopolymer flocculant (TBPF) dosage via face‐centred central composite design
The effect of the interaction factor between pH and dosage is important in leachate wastewater treatment. This study aims to remove leachate pollutants such as turbidity, total suspended solid (TSS), chemical oxygen demand (COD) and colour using simultaneous factors of plant‐based Tacca leontopetaloides biopolymer flocculant (TBPF) dosage and leachate pH. The flocculation process was carried out through jar test by applying the perikinetic theory and statical analysis (face‐centred central composite design). The results found that the optimum leachate pH and TBPF dosage were pH 3 and 150 mg/L, respectively. The highest removal of leachate pollutants reached up to 69% with a second‐order perikinetic model; R2 = 0.9545 and k = 9 × 10−6 L/mg/min were obtained. Simultaneous interaction factors between leachate pH and TBPF dosage on turbidity and TSS removal were found significant and hence can be applied in the actual leachate wastewater treatment industry, particularly at the primary stage using the proposed model.
期刊介绍:
Water and Environment Journal is an internationally recognised peer reviewed Journal for the dissemination of innovations and solutions focussed on enhancing water management best practice. Water and Environment Journal is available to over 12,000 institutions with a further 7,000 copies physically distributed to the Chartered Institution of Water and Environmental Management (CIWEM) membership, comprised of environment sector professionals based across the value chain (utilities, consultancy, technology suppliers, regulators, government and NGOs). As such, the journal provides a conduit between academics and practitioners. We therefore particularly encourage contributions focussed at the interface between academia and industry, which deliver industrially impactful applied research underpinned by scientific evidence. We are keen to attract papers on a broad range of subjects including:
-Water and wastewater treatment for agricultural, municipal and industrial applications
-Sludge treatment including processing, storage and management
-Water recycling
-Urban and stormwater management
-Integrated water management strategies
-Water infrastructure and distribution
-Climate change mitigation including management of impacts on agriculture, urban areas and infrastructure