{"title":"一种创新的足部模块,可方便地调整前平面,增强在不平地面上的运动能力","authors":"B. Altenburg, M. Ernst, T. Schmalz","doi":"10.33137/cpoj.v1i2.32029","DOIUrl":null,"url":null,"abstract":"INTRODUCTION \nReal-life outdoor walking of amputees is challenged by uneven ground. Uneven ground requires either a component adaptation in the sagittal plane or in frontal plane or both. The lack of adaptability of prosthetic components requires compensational movement strategies by the user. Common energy storing and returning (ESR) feet have some basic flexibility through the carbon structure allowing for some limited adaptation in both planes. For the frontal plane the split toe feature adds some functionality. However, even with split toe the ROM is clearly limited and needs high force impact for minor adaptations. Now there is a novel foot module allowing for 10° inversion/eversion through a dedicated joint. This study investigates the hypothesis that such a foot module with easily accessible frontal plane adaptation enhances the locomotion on uneven ground. \nAbstract PDF Link: https://jps.library.utoronto.ca/index.php/cpoj/article/view/32029/24446 \nHow to cite: Altenburg B, Ernst M, Schmalz T. AN INNOVATIVE FOOT MODULE WITH EASILY ACCESSIBLE FRONTAL PLANE ADAPTATION ENHANCES THE LOCOMOTION ON UNEVEN GROUND. CANADIAN PROSTHETICS & ORTHOTICS JOURNAL, VOLUME 1, ISSUE 2, 2018; ABSTRACT, ORAL PRESENTATION AT THE AOPA’S 101ST NATIONAL ASSEMBLY, SEPT. 26-29, VANCOUVER, CANADA, 2018. DOI: https://doi.org/10.33137/cpoj.v1i2.32029 \nAbstracts were Peer-reviewed by the American Orthotic Prosthetic Association (AOPA) 101st National Assembly Scientific Committee. \nhttp://www.aopanet.org/","PeriodicalId":32763,"journal":{"name":"Canadian Prosthetics Orthotics Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AN INNOVATIVE FOOT MODULE WITH EASILY ACCESSIBLE FRONTAL PLANE ADAPTATION ENHANCES THE LOCOMOTION ON UNEVEN GROUND\",\"authors\":\"B. Altenburg, M. Ernst, T. Schmalz\",\"doi\":\"10.33137/cpoj.v1i2.32029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"INTRODUCTION \\nReal-life outdoor walking of amputees is challenged by uneven ground. Uneven ground requires either a component adaptation in the sagittal plane or in frontal plane or both. The lack of adaptability of prosthetic components requires compensational movement strategies by the user. Common energy storing and returning (ESR) feet have some basic flexibility through the carbon structure allowing for some limited adaptation in both planes. For the frontal plane the split toe feature adds some functionality. However, even with split toe the ROM is clearly limited and needs high force impact for minor adaptations. Now there is a novel foot module allowing for 10° inversion/eversion through a dedicated joint. This study investigates the hypothesis that such a foot module with easily accessible frontal plane adaptation enhances the locomotion on uneven ground. \\nAbstract PDF Link: https://jps.library.utoronto.ca/index.php/cpoj/article/view/32029/24446 \\nHow to cite: Altenburg B, Ernst M, Schmalz T. AN INNOVATIVE FOOT MODULE WITH EASILY ACCESSIBLE FRONTAL PLANE ADAPTATION ENHANCES THE LOCOMOTION ON UNEVEN GROUND. CANADIAN PROSTHETICS & ORTHOTICS JOURNAL, VOLUME 1, ISSUE 2, 2018; ABSTRACT, ORAL PRESENTATION AT THE AOPA’S 101ST NATIONAL ASSEMBLY, SEPT. 26-29, VANCOUVER, CANADA, 2018. DOI: https://doi.org/10.33137/cpoj.v1i2.32029 \\nAbstracts were Peer-reviewed by the American Orthotic Prosthetic Association (AOPA) 101st National Assembly Scientific Committee. \\nhttp://www.aopanet.org/\",\"PeriodicalId\":32763,\"journal\":{\"name\":\"Canadian Prosthetics Orthotics Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Prosthetics Orthotics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33137/cpoj.v1i2.32029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Prosthetics Orthotics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33137/cpoj.v1i2.32029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
AN INNOVATIVE FOOT MODULE WITH EASILY ACCESSIBLE FRONTAL PLANE ADAPTATION ENHANCES THE LOCOMOTION ON UNEVEN GROUND
INTRODUCTION
Real-life outdoor walking of amputees is challenged by uneven ground. Uneven ground requires either a component adaptation in the sagittal plane or in frontal plane or both. The lack of adaptability of prosthetic components requires compensational movement strategies by the user. Common energy storing and returning (ESR) feet have some basic flexibility through the carbon structure allowing for some limited adaptation in both planes. For the frontal plane the split toe feature adds some functionality. However, even with split toe the ROM is clearly limited and needs high force impact for minor adaptations. Now there is a novel foot module allowing for 10° inversion/eversion through a dedicated joint. This study investigates the hypothesis that such a foot module with easily accessible frontal plane adaptation enhances the locomotion on uneven ground.
Abstract PDF Link: https://jps.library.utoronto.ca/index.php/cpoj/article/view/32029/24446
How to cite: Altenburg B, Ernst M, Schmalz T. AN INNOVATIVE FOOT MODULE WITH EASILY ACCESSIBLE FRONTAL PLANE ADAPTATION ENHANCES THE LOCOMOTION ON UNEVEN GROUND. CANADIAN PROSTHETICS & ORTHOTICS JOURNAL, VOLUME 1, ISSUE 2, 2018; ABSTRACT, ORAL PRESENTATION AT THE AOPA’S 101ST NATIONAL ASSEMBLY, SEPT. 26-29, VANCOUVER, CANADA, 2018. DOI: https://doi.org/10.33137/cpoj.v1i2.32029
Abstracts were Peer-reviewed by the American Orthotic Prosthetic Association (AOPA) 101st National Assembly Scientific Committee.
http://www.aopanet.org/