全纯Cartan几何的变形理论,II

IF 0.5 Q3 MATHEMATICS
I. Biswas, Sorin Dumitrescu, G. Schumacher
{"title":"全纯Cartan几何的变形理论,II","authors":"I. Biswas, Sorin Dumitrescu, G. Schumacher","doi":"10.1515/coma-2021-0129","DOIUrl":null,"url":null,"abstract":"Abstract In this continuation of [4], we investigate the deformations of holomorphic Cartan geometries where the underlying complex manifold is allowed to move. The space of infinitesimal deformations of a flat holomorphic Cartan geometry is computed. We show that the natural forgetful map, from the infinitesimal deformations of a flat holomorphic Cartan geometry to the infinitesimal deformations of the underlying flat principal bundle on the topological manifold, is an isomorphism.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"9 1","pages":"52 - 64"},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformation theory of holomorphic Cartan geometries, II\",\"authors\":\"I. Biswas, Sorin Dumitrescu, G. Schumacher\",\"doi\":\"10.1515/coma-2021-0129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this continuation of [4], we investigate the deformations of holomorphic Cartan geometries where the underlying complex manifold is allowed to move. The space of infinitesimal deformations of a flat holomorphic Cartan geometry is computed. We show that the natural forgetful map, from the infinitesimal deformations of a flat holomorphic Cartan geometry to the infinitesimal deformations of the underlying flat principal bundle on the topological manifold, is an isomorphism.\",\"PeriodicalId\":42393,\"journal\":{\"name\":\"Complex Manifolds\",\"volume\":\"9 1\",\"pages\":\"52 - 64\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/coma-2021-0129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2021-0129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在[4]的延续中,我们研究了允许底层复流形移动的全纯Cartan几何的变形。计算了平面全纯卡尔坦几何的无穷小变形空间。我们证明了从平坦全纯卡尔坦几何的无穷小变形到拓扑流形上底层平坦主束的无穷小变形的自然遗忘映射是同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deformation theory of holomorphic Cartan geometries, II
Abstract In this continuation of [4], we investigate the deformations of holomorphic Cartan geometries where the underlying complex manifold is allowed to move. The space of infinitesimal deformations of a flat holomorphic Cartan geometry is computed. We show that the natural forgetful map, from the infinitesimal deformations of a flat holomorphic Cartan geometry to the infinitesimal deformations of the underlying flat principal bundle on the topological manifold, is an isomorphism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex Manifolds
Complex Manifolds MATHEMATICS-
CiteScore
1.30
自引率
20.00%
发文量
14
审稿时长
25 weeks
期刊介绍: Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信