{"title":"全纯Cartan几何的变形理论,II","authors":"I. Biswas, Sorin Dumitrescu, G. Schumacher","doi":"10.1515/coma-2021-0129","DOIUrl":null,"url":null,"abstract":"Abstract In this continuation of [4], we investigate the deformations of holomorphic Cartan geometries where the underlying complex manifold is allowed to move. The space of infinitesimal deformations of a flat holomorphic Cartan geometry is computed. We show that the natural forgetful map, from the infinitesimal deformations of a flat holomorphic Cartan geometry to the infinitesimal deformations of the underlying flat principal bundle on the topological manifold, is an isomorphism.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"9 1","pages":"52 - 64"},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformation theory of holomorphic Cartan geometries, II\",\"authors\":\"I. Biswas, Sorin Dumitrescu, G. Schumacher\",\"doi\":\"10.1515/coma-2021-0129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this continuation of [4], we investigate the deformations of holomorphic Cartan geometries where the underlying complex manifold is allowed to move. The space of infinitesimal deformations of a flat holomorphic Cartan geometry is computed. We show that the natural forgetful map, from the infinitesimal deformations of a flat holomorphic Cartan geometry to the infinitesimal deformations of the underlying flat principal bundle on the topological manifold, is an isomorphism.\",\"PeriodicalId\":42393,\"journal\":{\"name\":\"Complex Manifolds\",\"volume\":\"9 1\",\"pages\":\"52 - 64\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/coma-2021-0129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2021-0129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Deformation theory of holomorphic Cartan geometries, II
Abstract In this continuation of [4], we investigate the deformations of holomorphic Cartan geometries where the underlying complex manifold is allowed to move. The space of infinitesimal deformations of a flat holomorphic Cartan geometry is computed. We show that the natural forgetful map, from the infinitesimal deformations of a flat holomorphic Cartan geometry to the infinitesimal deformations of the underlying flat principal bundle on the topological manifold, is an isomorphism.
期刊介绍:
Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.