N. Yamamoto, Naoya Kuwabara, D. Kuwahara, Shinatora Cho, Y. Kosuga, Guilhem Dif Pradalier
{"title":"用微波干涉法观察霍尔推力器中的等离子体湍流","authors":"N. Yamamoto, Naoya Kuwabara, D. Kuwahara, Shinatora Cho, Y. Kosuga, Guilhem Dif Pradalier","doi":"10.2514/1.b38711","DOIUrl":null,"url":null,"abstract":"To understand anomalous electron transport in a Hall thruster, plasma turbulence inside the acceleration channel was observed using a 76 GHz microwave interferometer. The dependence of the amplitude of the 100–500 kHz turbulence on magnetic flux density, and the relationships between the turbulence and other plasma instabilities and between the turbulence and the discharge current were investigated through spectral density and bicoherence analysis. The amplitude of electron number density fluctuations of the turbulence, integrating the spectral density from 100 to 500 kHz, is [Formula: see text], or almost 10% of the time-averaged electron number density. The amplitude of the turbulence decreases with increase in weak magnetic field strength (coil current less than 0.6 A) and then increases with increase in magnetic field strength. The amplitude of the turbulence has a positive relation to the discharge current, leads to anomalous electron transport inside the acceleration channel, and is coupled with ionization instability. In addition, low-frequency perturbations of several hundred hertz were observed, with a positive relation to the turbulence and coupled with both ionization instability and turbulence.","PeriodicalId":16903,"journal":{"name":"Journal of Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observation of Plasma Turbulence in a Hall Thruster Using Microwave Interferometry\",\"authors\":\"N. Yamamoto, Naoya Kuwabara, D. Kuwahara, Shinatora Cho, Y. Kosuga, Guilhem Dif Pradalier\",\"doi\":\"10.2514/1.b38711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To understand anomalous electron transport in a Hall thruster, plasma turbulence inside the acceleration channel was observed using a 76 GHz microwave interferometer. The dependence of the amplitude of the 100–500 kHz turbulence on magnetic flux density, and the relationships between the turbulence and other plasma instabilities and between the turbulence and the discharge current were investigated through spectral density and bicoherence analysis. The amplitude of electron number density fluctuations of the turbulence, integrating the spectral density from 100 to 500 kHz, is [Formula: see text], or almost 10% of the time-averaged electron number density. The amplitude of the turbulence decreases with increase in weak magnetic field strength (coil current less than 0.6 A) and then increases with increase in magnetic field strength. The amplitude of the turbulence has a positive relation to the discharge current, leads to anomalous electron transport inside the acceleration channel, and is coupled with ionization instability. In addition, low-frequency perturbations of several hundred hertz were observed, with a positive relation to the turbulence and coupled with both ionization instability and turbulence.\",\"PeriodicalId\":16903,\"journal\":{\"name\":\"Journal of Propulsion and Power\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Propulsion and Power\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.b38711\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Propulsion and Power","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.b38711","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Observation of Plasma Turbulence in a Hall Thruster Using Microwave Interferometry
To understand anomalous electron transport in a Hall thruster, plasma turbulence inside the acceleration channel was observed using a 76 GHz microwave interferometer. The dependence of the amplitude of the 100–500 kHz turbulence on magnetic flux density, and the relationships between the turbulence and other plasma instabilities and between the turbulence and the discharge current were investigated through spectral density and bicoherence analysis. The amplitude of electron number density fluctuations of the turbulence, integrating the spectral density from 100 to 500 kHz, is [Formula: see text], or almost 10% of the time-averaged electron number density. The amplitude of the turbulence decreases with increase in weak magnetic field strength (coil current less than 0.6 A) and then increases with increase in magnetic field strength. The amplitude of the turbulence has a positive relation to the discharge current, leads to anomalous electron transport inside the acceleration channel, and is coupled with ionization instability. In addition, low-frequency perturbations of several hundred hertz were observed, with a positive relation to the turbulence and coupled with both ionization instability and turbulence.
期刊介绍:
This Journal is devoted to the advancement of the science and technology of aerospace propulsion and power through the dissemination of original archival papers contributing to advancements in airbreathing, electric, and advanced propulsion; solid and liquid rockets; fuels and propellants; power generation and conversion for aerospace vehicles; and the application of aerospace science and technology to terrestrial energy devices and systems. It is intended to provide readers of the Journal, with primary interests in propulsion and power, access to papers spanning the range from research through development to applications. Papers in these disciplines and the sciences of combustion, fluid mechanics, and solid mechanics as directly related to propulsion and power are solicited.