{"title":"伯努利模型序贯多假设检验的数值方法","authors":"A. Novikov","doi":"10.1080/07474946.2023.2215825","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we deal with the problem of sequential testing of multiple hypotheses. The main goal is minimizing the expected sample size (ESS) under restrictions on the error probabilities. We take, as a criterion of minimization, a weighted sum of the ESSs evaluated at some points of interest in the parameter space, aiming at its minimization under restrictions on the error probabilities. We use a variant of the method of Lagrange multipliers based on the minimization of an auxiliary objective function (called Lagrangian) combining the objective function with the restrictions, taken with some constants called multipliers. Subsequently, the multipliers are used to make the solution comply with the restrictions. We develop a computer-oriented method of minimization of the Lagrangian function that provides, depending on the specific choice of the parameter points, optimal tests in different concrete settings, as in Bayesian, Kiefer-Weiss, and other settings. To exemplify the proposed methods for the particular case of sampling from a Bernoulli population, we develop a set of computer algorithms for designing sequential tests that minimize the Lagrangian function and for the numerical evaluation of test characteristics like the error probabilities and the ESS. We implement the algorithms in the R programming language. The program code is available in a public GitHub repository. For the Bernoulli model, we made a series of computer evaluations related to the optimality of sequential multi-hypothesis tests, in a particular case of three hypotheses. A numerical comparison with the matrix sequential probability ratio test is carried out. A method of solution of the multi-hypothesis Kiefer-Weiss problem is proposed and is applied for a particular case of three hypotheses in the Bernoulli model.","PeriodicalId":48879,"journal":{"name":"Sequential Analysis-Design Methods and Applications","volume":"42 1","pages":"303 - 322"},"PeriodicalIF":0.6000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A numerical approach to sequential multi-hypothesis testing for Bernoulli model\",\"authors\":\"A. Novikov\",\"doi\":\"10.1080/07474946.2023.2215825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we deal with the problem of sequential testing of multiple hypotheses. The main goal is minimizing the expected sample size (ESS) under restrictions on the error probabilities. We take, as a criterion of minimization, a weighted sum of the ESSs evaluated at some points of interest in the parameter space, aiming at its minimization under restrictions on the error probabilities. We use a variant of the method of Lagrange multipliers based on the minimization of an auxiliary objective function (called Lagrangian) combining the objective function with the restrictions, taken with some constants called multipliers. Subsequently, the multipliers are used to make the solution comply with the restrictions. We develop a computer-oriented method of minimization of the Lagrangian function that provides, depending on the specific choice of the parameter points, optimal tests in different concrete settings, as in Bayesian, Kiefer-Weiss, and other settings. To exemplify the proposed methods for the particular case of sampling from a Bernoulli population, we develop a set of computer algorithms for designing sequential tests that minimize the Lagrangian function and for the numerical evaluation of test characteristics like the error probabilities and the ESS. We implement the algorithms in the R programming language. The program code is available in a public GitHub repository. For the Bernoulli model, we made a series of computer evaluations related to the optimality of sequential multi-hypothesis tests, in a particular case of three hypotheses. A numerical comparison with the matrix sequential probability ratio test is carried out. A method of solution of the multi-hypothesis Kiefer-Weiss problem is proposed and is applied for a particular case of three hypotheses in the Bernoulli model.\",\"PeriodicalId\":48879,\"journal\":{\"name\":\"Sequential Analysis-Design Methods and Applications\",\"volume\":\"42 1\",\"pages\":\"303 - 322\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sequential Analysis-Design Methods and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07474946.2023.2215825\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sequential Analysis-Design Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07474946.2023.2215825","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A numerical approach to sequential multi-hypothesis testing for Bernoulli model
Abstract In this article, we deal with the problem of sequential testing of multiple hypotheses. The main goal is minimizing the expected sample size (ESS) under restrictions on the error probabilities. We take, as a criterion of minimization, a weighted sum of the ESSs evaluated at some points of interest in the parameter space, aiming at its minimization under restrictions on the error probabilities. We use a variant of the method of Lagrange multipliers based on the minimization of an auxiliary objective function (called Lagrangian) combining the objective function with the restrictions, taken with some constants called multipliers. Subsequently, the multipliers are used to make the solution comply with the restrictions. We develop a computer-oriented method of minimization of the Lagrangian function that provides, depending on the specific choice of the parameter points, optimal tests in different concrete settings, as in Bayesian, Kiefer-Weiss, and other settings. To exemplify the proposed methods for the particular case of sampling from a Bernoulli population, we develop a set of computer algorithms for designing sequential tests that minimize the Lagrangian function and for the numerical evaluation of test characteristics like the error probabilities and the ESS. We implement the algorithms in the R programming language. The program code is available in a public GitHub repository. For the Bernoulli model, we made a series of computer evaluations related to the optimality of sequential multi-hypothesis tests, in a particular case of three hypotheses. A numerical comparison with the matrix sequential probability ratio test is carried out. A method of solution of the multi-hypothesis Kiefer-Weiss problem is proposed and is applied for a particular case of three hypotheses in the Bernoulli model.
期刊介绍:
The purpose of Sequential Analysis is to contribute to theoretical and applied aspects of sequential methodologies in all areas of statistical science. Published papers highlight the development of new and important sequential approaches.
Interdisciplinary articles that emphasize the methodology of practical value to applied researchers and statistical consultants are highly encouraged. Papers that cover contemporary areas of applications including animal abundance, bioequivalence, communication science, computer simulations, data mining, directional data, disease mapping, environmental sampling, genome, imaging, microarrays, networking, parallel processing, pest management, sonar detection, spatial statistics, tracking, and engineering are deemed especially important. Of particular value are expository review articles that critically synthesize broad-based statistical issues. Papers on case-studies are also considered. All papers are refereed.