刚性解析几何中的导Hom空间

IF 1.1 2区 数学 Q1 MATHEMATICS
Mauro Porta, Tony Yue Yu
{"title":"刚性解析几何中的导Hom空间","authors":"Mauro Porta, Tony Yue Yu","doi":"10.4171/prims/57-3-7","DOIUrl":null,"url":null,"abstract":"We construct a derived enhancement of Hom spaces between rigid analytic spaces. It encodes the hidden deformation-theoretic informations of the underlying classical moduli space. The main tool in our construction is the representability theorem in derived analytic geometry, which has been established in our previous work. The representability theorem provides us sufficient and necessary conditions for an analytic moduli functor to possess the structure of a derived analytic stack. In order to verify the conditions of the representability theorem, we prove several general results in the context of derived non-archimedean analytic geometry: derived Tate acyclicity, projection formula, and proper base change. These results also deserve independent interest themselves. Our main motivation comes from non-archimedean enumerative geometry. In our subsequent works, we will apply the derived mapping stacks to obtain non-archimedean analytic Gromov-Witten invariants.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Derived Hom Spaces in Rigid Analytic Geometry\",\"authors\":\"Mauro Porta, Tony Yue Yu\",\"doi\":\"10.4171/prims/57-3-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a derived enhancement of Hom spaces between rigid analytic spaces. It encodes the hidden deformation-theoretic informations of the underlying classical moduli space. The main tool in our construction is the representability theorem in derived analytic geometry, which has been established in our previous work. The representability theorem provides us sufficient and necessary conditions for an analytic moduli functor to possess the structure of a derived analytic stack. In order to verify the conditions of the representability theorem, we prove several general results in the context of derived non-archimedean analytic geometry: derived Tate acyclicity, projection formula, and proper base change. These results also deserve independent interest themselves. Our main motivation comes from non-archimedean enumerative geometry. In our subsequent works, we will apply the derived mapping stacks to obtain non-archimedean analytic Gromov-Witten invariants.\",\"PeriodicalId\":54528,\"journal\":{\"name\":\"Publications of the Research Institute for Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Research Institute for Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/prims/57-3-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/prims/57-3-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

摘要

我们在刚性分析空间之间构造了Hom空间的一个派生增强。它编码了底层经典模量空间的隐藏变形理论信息。我们构造的主要工具是导出解析几何中的可表示性定理,它已经在我们以前的工作中建立。可表示性定理为解析模函子具有导出解析栈的结构提供了充分必要的条件。为了验证可表示性定理的条件,我们在导出的非阿基米德解析几何中证明了几个一般结果:导出的Tate非循环性、投影公式和适当的基变。这些结果本身也值得独立关注。我们的主要动机来自非阿基米德枚举几何。在我们随后的工作中,我们将应用导出的映射堆栈来获得非阿基米德解析Gromov-Witten不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derived Hom Spaces in Rigid Analytic Geometry
We construct a derived enhancement of Hom spaces between rigid analytic spaces. It encodes the hidden deformation-theoretic informations of the underlying classical moduli space. The main tool in our construction is the representability theorem in derived analytic geometry, which has been established in our previous work. The representability theorem provides us sufficient and necessary conditions for an analytic moduli functor to possess the structure of a derived analytic stack. In order to verify the conditions of the representability theorem, we prove several general results in the context of derived non-archimedean analytic geometry: derived Tate acyclicity, projection formula, and proper base change. These results also deserve independent interest themselves. Our main motivation comes from non-archimedean enumerative geometry. In our subsequent works, we will apply the derived mapping stacks to obtain non-archimedean analytic Gromov-Witten invariants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信