{"title":"保留化合物混合更新过程结构的渐进等效概率测度的表征","authors":"Spyridon M. Tzaninis, N. D. Macheras","doi":"10.30757/alea.v20-09","DOIUrl":null,"url":null,"abstract":"Generalizing earlier works of Delbaen & Haezendonck [5] as well as of [18] and [16] for given compound mixed renewal process S under a probability measure P, we characterize all those probability measures Q on the domain of P such that Q and P are progressively equivalent and S remains a compound mixed renewal process under Q with improved properties. As a consequence, we prove that any compound mixed renewal process can be converted into a compound mixed Poisson process through a change of measures. Applications related to the ruin problem and to the computation of premium calculation principles in an insurance market without arbitrage opportunities are discussed in [26] and [27], respectively.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A characterization of progressively equivalent probability measures preserving the structure of a compound mixed renewal process\",\"authors\":\"Spyridon M. Tzaninis, N. D. Macheras\",\"doi\":\"10.30757/alea.v20-09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalizing earlier works of Delbaen & Haezendonck [5] as well as of [18] and [16] for given compound mixed renewal process S under a probability measure P, we characterize all those probability measures Q on the domain of P such that Q and P are progressively equivalent and S remains a compound mixed renewal process under Q with improved properties. As a consequence, we prove that any compound mixed renewal process can be converted into a compound mixed Poisson process through a change of measures. Applications related to the ruin problem and to the computation of premium calculation principles in an insurance market without arbitrage opportunities are discussed in [26] and [27], respectively.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v20-09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v20-09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A characterization of progressively equivalent probability measures preserving the structure of a compound mixed renewal process
Generalizing earlier works of Delbaen & Haezendonck [5] as well as of [18] and [16] for given compound mixed renewal process S under a probability measure P, we characterize all those probability measures Q on the domain of P such that Q and P are progressively equivalent and S remains a compound mixed renewal process under Q with improved properties. As a consequence, we prove that any compound mixed renewal process can be converted into a compound mixed Poisson process through a change of measures. Applications related to the ruin problem and to the computation of premium calculation principles in an insurance market without arbitrage opportunities are discussed in [26] and [27], respectively.