\(AP\)-Henstock积分的乘子性质

Kwancheol Shin, Ju Han Changwon Yoon
{"title":"\\(AP\\)-Henstock积分的乘子性质","authors":"Kwancheol Shin, Ju Han Changwon Yoon","doi":"10.30538/psrp-oma2022.0103","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate some properties of the \\(AP\\)-Henstock integral on a compact set and prove that the product of an \\(AP\\)-Henstock integrable function and a function of bounded variation is \\(AP\\)-Henstock integrable. Furthermore, we prove that the product of an \\(AP\\)-Henstock integrable function and a regulated function is also \\(AP\\)-Henstock integrable. We also define the \\(AP\\)-Henstock integral on an unbounded interval, investigate some properties, and show similar multiplier properties.","PeriodicalId":52741,"journal":{"name":"Open Journal of Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiplier properties for the \\\\(AP\\\\)-Henstock integral\",\"authors\":\"Kwancheol Shin, Ju Han Changwon Yoon\",\"doi\":\"10.30538/psrp-oma2022.0103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate some properties of the \\\\(AP\\\\)-Henstock integral on a compact set and prove that the product of an \\\\(AP\\\\)-Henstock integrable function and a function of bounded variation is \\\\(AP\\\\)-Henstock integrable. Furthermore, we prove that the product of an \\\\(AP\\\\)-Henstock integrable function and a regulated function is also \\\\(AP\\\\)-Henstock integrable. We also define the \\\\(AP\\\\)-Henstock integral on an unbounded interval, investigate some properties, and show similar multiplier properties.\",\"PeriodicalId\":52741,\"journal\":{\"name\":\"Open Journal of Mathematical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Journal of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30538/psrp-oma2022.0103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/psrp-oma2022.0103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了紧集上的(AP)-Henstock积分的一些性质,证明了(AP)-Henstock可积函数与有界变差函数的乘积是(AP)-Henstock可积函数。此外,我们还证明了一个\(AP\)-Henstock可积函数与一个调节函数的乘积也是\(AP\\\\]-Henstoch可积函数。我们还定义了无界区间上的\(AP\)-Henstock积分,研究了一些性质,并给出了类似的乘子性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplier properties for the \(AP\)-Henstock integral
In this paper, we investigate some properties of the \(AP\)-Henstock integral on a compact set and prove that the product of an \(AP\)-Henstock integrable function and a function of bounded variation is \(AP\)-Henstock integrable. Furthermore, we prove that the product of an \(AP\)-Henstock integrable function and a regulated function is also \(AP\)-Henstock integrable. We also define the \(AP\)-Henstock integral on an unbounded interval, investigate some properties, and show similar multiplier properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信