将典型紧集代入幂级数

IF 0.1 Q4 MATHEMATICS
Don'at Nagy
{"title":"将典型紧集代入幂级数","authors":"Don'at Nagy","doi":"10.14321/realanalexch.46.1.0149","DOIUrl":null,"url":null,"abstract":"The Minkowski sum and Minkowski product can be considered as the addition and multiplication of subsets of $\\mathbb{R}$. If we consider a compact subset $K\\subseteq[0,1]$ and a power series $f$ which is absolutely convergent on $[0,1]$, then we may use these operations and the natural topology of the space of compact sets to substitute the compact set $K$ into the power series $f$. Changhao Chen studied this kind of substitution in the special case of polynomials and showed that if we substitute the typical compact set $K\\subseteq [0,1]$ into a polynomial, we get a set of Hausdorff dimension 0. We generalize this result and show that the situation is the same for power series where the coefficients converge to zero quickly. On the other hand we also show a large class of power series where the result of the substitution has Hausdorff dimension one.","PeriodicalId":44674,"journal":{"name":"Real Analysis Exchange","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2019-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Substituting the typical compact sets into a power series\",\"authors\":\"Don'at Nagy\",\"doi\":\"10.14321/realanalexch.46.1.0149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Minkowski sum and Minkowski product can be considered as the addition and multiplication of subsets of $\\\\mathbb{R}$. If we consider a compact subset $K\\\\subseteq[0,1]$ and a power series $f$ which is absolutely convergent on $[0,1]$, then we may use these operations and the natural topology of the space of compact sets to substitute the compact set $K$ into the power series $f$. Changhao Chen studied this kind of substitution in the special case of polynomials and showed that if we substitute the typical compact set $K\\\\subseteq [0,1]$ into a polynomial, we get a set of Hausdorff dimension 0. We generalize this result and show that the situation is the same for power series where the coefficients converge to zero quickly. On the other hand we also show a large class of power series where the result of the substitution has Hausdorff dimension one.\",\"PeriodicalId\":44674,\"journal\":{\"name\":\"Real Analysis Exchange\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2019-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real Analysis Exchange\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14321/realanalexch.46.1.0149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Analysis Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/realanalexch.46.1.0149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

闵可夫斯基和和闵可夫斯基积可以看作是$\mathbb{R}$的子集的加法和乘法。如果我们考虑一个紧子集$K\subseteq[0,1]$和一个绝对收敛于$[0,1]$的幂级数$f$,那么我们可以利用这些运算和紧集空间的自然拓扑将紧集$K$替换为幂级数$f$。陈长浩研究了多项式特殊情况下的这种替换,并证明了将典型紧集$K\subseteq[0,1]$替换为多项式,得到一个Hausdorff维数为0的集合。我们推广了这一结果,并证明了系数迅速收敛于零的幂级数也是如此。另一方面,我们也展示了一类幂级数其中代换的结果是豪斯多夫维数为1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Substituting the typical compact sets into a power series
The Minkowski sum and Minkowski product can be considered as the addition and multiplication of subsets of $\mathbb{R}$. If we consider a compact subset $K\subseteq[0,1]$ and a power series $f$ which is absolutely convergent on $[0,1]$, then we may use these operations and the natural topology of the space of compact sets to substitute the compact set $K$ into the power series $f$. Changhao Chen studied this kind of substitution in the special case of polynomials and showed that if we substitute the typical compact set $K\subseteq [0,1]$ into a polynomial, we get a set of Hausdorff dimension 0. We generalize this result and show that the situation is the same for power series where the coefficients converge to zero quickly. On the other hand we also show a large class of power series where the result of the substitution has Hausdorff dimension one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Real Analysis Exchange
Real Analysis Exchange MATHEMATICS-
CiteScore
0.40
自引率
50.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信