重述具有主同余的有限分配格的表示定理。图片证明方法

Q4 Mathematics
G. Grätzer, H. Lakser
{"title":"重述具有主同余的有限分配格的表示定理。图片证明方法","authors":"G. Grätzer, H. Lakser","doi":"10.7151/dmgaa.1375","DOIUrl":null,"url":null,"abstract":"Abstract A classical result of R.P. Dilworth states that every finite distributive lattice D can be represented as the congruence lattice of a finite lattice L. A sharper form was published in G. Grätzer and E.T. Schmidt in 1962, adding the requirement that all congruences in L be principal. Another variant, published in 1998 by the authors and E.T. Schmidt, constructs a planar semimodular lattice L. In this paper, we merge these two results: we construct L as a planar semimodular lattice in which all congruences are principal. This paper relies on the techniques developed by the authors and E.T. Schmidt in the 1998 paper.","PeriodicalId":36816,"journal":{"name":"Discussiones Mathematicae - General Algebra and Applications","volume":"41 1","pages":"411 - 417"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting the Representation Theorem of Finite Distributive Lattices with Principal Congruences. A Proof-By-Picture Approach\",\"authors\":\"G. Grätzer, H. Lakser\",\"doi\":\"10.7151/dmgaa.1375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A classical result of R.P. Dilworth states that every finite distributive lattice D can be represented as the congruence lattice of a finite lattice L. A sharper form was published in G. Grätzer and E.T. Schmidt in 1962, adding the requirement that all congruences in L be principal. Another variant, published in 1998 by the authors and E.T. Schmidt, constructs a planar semimodular lattice L. In this paper, we merge these two results: we construct L as a planar semimodular lattice in which all congruences are principal. This paper relies on the techniques developed by the authors and E.T. Schmidt in the 1998 paper.\",\"PeriodicalId\":36816,\"journal\":{\"name\":\"Discussiones Mathematicae - General Algebra and Applications\",\"volume\":\"41 1\",\"pages\":\"411 - 417\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae - General Algebra and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgaa.1375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae - General Algebra and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7151/dmgaa.1375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

R.P. Dilworth的一个经典结果表明,每一个有限分配格D都可以表示为有限分配格L的同余格。一个更清晰的形式在G. Grätzer和E.T. Schmidt于1962年发表,增加了L中的所有同余必须是主的要求。另一种变体,由作者和E.T. Schmidt在1998年发表,构造了一个平面半模格L。在本文中,我们合并了这两个结果:我们构造了一个平面半模格L,其中所有同余都是主的。本文依赖于作者和E.T. Schmidt在1998年论文中开发的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting the Representation Theorem of Finite Distributive Lattices with Principal Congruences. A Proof-By-Picture Approach
Abstract A classical result of R.P. Dilworth states that every finite distributive lattice D can be represented as the congruence lattice of a finite lattice L. A sharper form was published in G. Grätzer and E.T. Schmidt in 1962, adding the requirement that all congruences in L be principal. Another variant, published in 1998 by the authors and E.T. Schmidt, constructs a planar semimodular lattice L. In this paper, we merge these two results: we construct L as a planar semimodular lattice in which all congruences are principal. This paper relies on the techniques developed by the authors and E.T. Schmidt in the 1998 paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discussiones Mathematicae - General Algebra and Applications
Discussiones Mathematicae - General Algebra and Applications Mathematics-Algebra and Number Theory
CiteScore
0.60
自引率
0.00%
发文量
12
审稿时长
26 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信