{"title":"重述具有主同余的有限分配格的表示定理。图片证明方法","authors":"G. Grätzer, H. Lakser","doi":"10.7151/dmgaa.1375","DOIUrl":null,"url":null,"abstract":"Abstract A classical result of R.P. Dilworth states that every finite distributive lattice D can be represented as the congruence lattice of a finite lattice L. A sharper form was published in G. Grätzer and E.T. Schmidt in 1962, adding the requirement that all congruences in L be principal. Another variant, published in 1998 by the authors and E.T. Schmidt, constructs a planar semimodular lattice L. In this paper, we merge these two results: we construct L as a planar semimodular lattice in which all congruences are principal. This paper relies on the techniques developed by the authors and E.T. Schmidt in the 1998 paper.","PeriodicalId":36816,"journal":{"name":"Discussiones Mathematicae - General Algebra and Applications","volume":"41 1","pages":"411 - 417"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting the Representation Theorem of Finite Distributive Lattices with Principal Congruences. A Proof-By-Picture Approach\",\"authors\":\"G. Grätzer, H. Lakser\",\"doi\":\"10.7151/dmgaa.1375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A classical result of R.P. Dilworth states that every finite distributive lattice D can be represented as the congruence lattice of a finite lattice L. A sharper form was published in G. Grätzer and E.T. Schmidt in 1962, adding the requirement that all congruences in L be principal. Another variant, published in 1998 by the authors and E.T. Schmidt, constructs a planar semimodular lattice L. In this paper, we merge these two results: we construct L as a planar semimodular lattice in which all congruences are principal. This paper relies on the techniques developed by the authors and E.T. Schmidt in the 1998 paper.\",\"PeriodicalId\":36816,\"journal\":{\"name\":\"Discussiones Mathematicae - General Algebra and Applications\",\"volume\":\"41 1\",\"pages\":\"411 - 417\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae - General Algebra and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgaa.1375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae - General Algebra and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7151/dmgaa.1375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Revisiting the Representation Theorem of Finite Distributive Lattices with Principal Congruences. A Proof-By-Picture Approach
Abstract A classical result of R.P. Dilworth states that every finite distributive lattice D can be represented as the congruence lattice of a finite lattice L. A sharper form was published in G. Grätzer and E.T. Schmidt in 1962, adding the requirement that all congruences in L be principal. Another variant, published in 1998 by the authors and E.T. Schmidt, constructs a planar semimodular lattice L. In this paper, we merge these two results: we construct L as a planar semimodular lattice in which all congruences are principal. This paper relies on the techniques developed by the authors and E.T. Schmidt in the 1998 paper.