超有限Borel作用的上同调

Pub Date : 2020-01-24 DOI:10.4171/ggd/633
S. Bezuglyi, S. Sanadhya
{"title":"超有限Borel作用的上同调","authors":"S. Bezuglyi, S. Sanadhya","doi":"10.4171/ggd/633","DOIUrl":null,"url":null,"abstract":"We study cocycles of countable groups $\\Gamma$ of Borel automorphisms of a standard Borel space $(X, \\mathcal{B})$ taking values in a locally compact second countable group $G$. We prove that for a hyperfinite group $\\Gamma$ the subgroup of coboundaries is dense in the group of cocycles. We describe all Borel cocycles of the $2$-odometer and show that any such cocycle is cohomologous to a cocycle with values in a countable dense subgroup $H$ of $G$. We also provide a Borel version of Gottschalk-Hedlund theorem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cohomology of hyperfinite Borel actions\",\"authors\":\"S. Bezuglyi, S. Sanadhya\",\"doi\":\"10.4171/ggd/633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study cocycles of countable groups $\\\\Gamma$ of Borel automorphisms of a standard Borel space $(X, \\\\mathcal{B})$ taking values in a locally compact second countable group $G$. We prove that for a hyperfinite group $\\\\Gamma$ the subgroup of coboundaries is dense in the group of cocycles. We describe all Borel cocycles of the $2$-odometer and show that any such cocycle is cohomologous to a cocycle with values in a countable dense subgroup $H$ of $G$. We also provide a Borel version of Gottschalk-Hedlund theorem.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ggd/633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了标准Borel空间$(X, \mathcal{B})$的可数群$\Gamma$的环,其取值在局部紧化的第二可数群$G$上。证明了超有限群$\Gamma$的共边子群在共环群中是密集的。我们描述了$2$-里程计的所有Borel环,并证明了任何这样的环都与一个值在$G$的可数密子群$H$中的环是上同源的。我们还提供了Gottschalk-Hedlund定理的Borel版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Cohomology of hyperfinite Borel actions
We study cocycles of countable groups $\Gamma$ of Borel automorphisms of a standard Borel space $(X, \mathcal{B})$ taking values in a locally compact second countable group $G$. We prove that for a hyperfinite group $\Gamma$ the subgroup of coboundaries is dense in the group of cocycles. We describe all Borel cocycles of the $2$-odometer and show that any such cocycle is cohomologous to a cocycle with values in a countable dense subgroup $H$ of $G$. We also provide a Borel version of Gottschalk-Hedlund theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信