线性高阶分数阶微分方程和积分方程

IF 0.8 4区 数学 Q2 MATHEMATICS
K. Lan
{"title":"线性高阶分数阶微分方程和积分方程","authors":"K. Lan","doi":"10.58997/ejde.2023.01","DOIUrl":null,"url":null,"abstract":"We study the equivalences and the implications between linear (or homogeneous) nth order fractional differential equations (FDEs) and integral equations in the spaces L1(a,b) and C[a,b] when n≥ 2. We establish the equivalence in C[a,b] of the IVP of the nth order FDE subject to the initial condition u(i)(a)=ui for i in {0,1,...,n-1} when n≥2. The difficulty is that the known conditions for such equivalence for the first order FDEs are not sufficient for equivalence in the nth order FDEs with n≥2. In this article we provide additional conditions to ensure the equivalence for the nth order FDEs with n≥2. In particular, we obtain conditions under which solutions of the integral equations are solutions of the linear nth order FDEs. These results are keys for further studying the existence of solutions and nonnegative solutions to initial and boundary value problems of nonlinear nth order FDEs. This is done via the corresponding integral equations by topological methods such as the Banach contraction principle, fixed point index theory, and degree theory.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Linear higher-order fractional differential and integral equations\",\"authors\":\"K. Lan\",\"doi\":\"10.58997/ejde.2023.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the equivalences and the implications between linear (or homogeneous) nth order fractional differential equations (FDEs) and integral equations in the spaces L1(a,b) and C[a,b] when n≥ 2. We establish the equivalence in C[a,b] of the IVP of the nth order FDE subject to the initial condition u(i)(a)=ui for i in {0,1,...,n-1} when n≥2. The difficulty is that the known conditions for such equivalence for the first order FDEs are not sufficient for equivalence in the nth order FDEs with n≥2. In this article we provide additional conditions to ensure the equivalence for the nth order FDEs with n≥2. In particular, we obtain conditions under which solutions of the integral equations are solutions of the linear nth order FDEs. These results are keys for further studying the existence of solutions and nonnegative solutions to initial and boundary value problems of nonlinear nth order FDEs. This is done via the corresponding integral equations by topological methods such as the Banach contraction principle, fixed point index theory, and degree theory.\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.01\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.01","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

当n≥2时,我们研究了L1(a,b)和C[a,b]空间中线性(或齐次)n阶分数微分方程(FDE)和积分方程之间的等价性和含义。当n≥2时,我们在{0,1,…,n-1}中的i的初始条件u(i)(a)=ui下,在C[a,b]中建立了n阶FDE的IVP的等价性。困难在于,一阶FDE的这种等价的已知条件不足以在n≥2的n阶FDE中等价。在本文中,我们提供了额外的条件来确保n≥2的n阶FDE的等价性。特别地,我们得到了积分方程的解是线性n阶FDE的解的条件。这些结果是进一步研究非线性n阶FDE初边值问题解和非负解存在性的关键。这是通过相应的积分方程,利用拓扑方法,如Banach收缩原理、不动点指数理论和度理论来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear higher-order fractional differential and integral equations
We study the equivalences and the implications between linear (or homogeneous) nth order fractional differential equations (FDEs) and integral equations in the spaces L1(a,b) and C[a,b] when n≥ 2. We establish the equivalence in C[a,b] of the IVP of the nth order FDE subject to the initial condition u(i)(a)=ui for i in {0,1,...,n-1} when n≥2. The difficulty is that the known conditions for such equivalence for the first order FDEs are not sufficient for equivalence in the nth order FDEs with n≥2. In this article we provide additional conditions to ensure the equivalence for the nth order FDEs with n≥2. In particular, we obtain conditions under which solutions of the integral equations are solutions of the linear nth order FDEs. These results are keys for further studying the existence of solutions and nonnegative solutions to initial and boundary value problems of nonlinear nth order FDEs. This is done via the corresponding integral equations by topological methods such as the Banach contraction principle, fixed point index theory, and degree theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信