Hele–Shaw流作为具有不同迁移率的Cahn–Hilliard方程的尖锐界面极限

IF 2.1 2区 数学 Q1 MATHEMATICS
Milan Kroemer, Tim Laux
{"title":"Hele–Shaw流作为具有不同迁移率的Cahn–Hilliard方程的尖锐界面极限","authors":"Milan Kroemer, Tim Laux","doi":"10.1080/03605302.2022.2129384","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the sharp interface limit for solutions of the Cahn–Hilliard equation with disparate mobilities. This means that the mobility function degenerates in one of the two energetically favorable configurations, suppressing the diffusion in that phase. First, we construct suitable weak solutions to this Cahn–Hilliard equation. Second, we prove precompactness of these solutions under natural assumptions on the initial data. Third, under an additional energy convergence assumption, we show that the sharp interface limit is a distributional solution to the Hele–Shaw flow with optimal energy-dissipation rate.","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":"47 1","pages":"2444 - 2486"},"PeriodicalIF":2.1000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The Hele–Shaw flow as the sharp interface limit of the Cahn–Hilliard equation with disparate mobilities\",\"authors\":\"Milan Kroemer, Tim Laux\",\"doi\":\"10.1080/03605302.2022.2129384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we study the sharp interface limit for solutions of the Cahn–Hilliard equation with disparate mobilities. This means that the mobility function degenerates in one of the two energetically favorable configurations, suppressing the diffusion in that phase. First, we construct suitable weak solutions to this Cahn–Hilliard equation. Second, we prove precompactness of these solutions under natural assumptions on the initial data. Third, under an additional energy convergence assumption, we show that the sharp interface limit is a distributional solution to the Hele–Shaw flow with optimal energy-dissipation rate.\",\"PeriodicalId\":50657,\"journal\":{\"name\":\"Communications in Partial Differential Equations\",\"volume\":\"47 1\",\"pages\":\"2444 - 2486\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2022.2129384\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2022.2129384","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

摘要本文研究了具有不同移动率的Cahn-Hilliard方程解的尖锐界面极限。这意味着迁移率函数在两种能量有利的构型之一中退化,抑制了该相的扩散。首先,我们构造了Cahn-Hilliard方程的合适弱解。其次,我们在初始数据的自然假设下证明了这些解的预紧性。第三,在附加能量收敛假设下,我们证明了尖锐界面极限是Hele-Shaw流最优耗能率的分布解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Hele–Shaw flow as the sharp interface limit of the Cahn–Hilliard equation with disparate mobilities
Abstract In this paper, we study the sharp interface limit for solutions of the Cahn–Hilliard equation with disparate mobilities. This means that the mobility function degenerates in one of the two energetically favorable configurations, suppressing the diffusion in that phase. First, we construct suitable weak solutions to this Cahn–Hilliard equation. Second, we prove precompactness of these solutions under natural assumptions on the initial data. Third, under an additional energy convergence assumption, we show that the sharp interface limit is a distributional solution to the Hele–Shaw flow with optimal energy-dissipation rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: This journal aims to publish high quality papers concerning any theoretical aspect of partial differential equations, as well as its applications to other areas of mathematics. Suitability of any paper is at the discretion of the editors. We seek to present the most significant advances in this central field to a wide readership which includes researchers and graduate students in mathematics and the more mathematical aspects of physics and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信