{"title":"赤裸裸的统计证据的决策理论和基于风险的方法:一些后果和挑战","authors":"Rafal Urbaniak;Alicja Kowalewska;Pavel Janda;Patryk Dziurosz-Serafinowicz","doi":"10.1093/lpr/mgaa001","DOIUrl":null,"url":null,"abstract":"In the debate about the legal value of naked statistical evidence, Di Bello argues that (1) the likelihood ratio of such evidence is unknown, (2) the decision-theoretic considerations indicate that a conviction based on such evidence is unacceptable when expected utility maximization is combined with fairness constraints, and (3) the risk of mistaken conviction based on such evidence cannot be evaluated and is potentially too high. We argue that Di Bello's argument for (1) works in a rather narrow context, and that (1) is not exactly in line with the way expert witnesses are required to formulate their opinions. Consequently, Di Bello's argument for (2), which assumes (1), does not apply uniformly to all convictions based on naked evidence. Moreover, if Di Bello's analysis is correct, it applies also to eyewitness testimony, given empirical results about its quality, and so the distinctions drawn by DiBello cut across the distinction between naked statistical evidence and other types of evidence. Finally, if we weaken the rather strong requirement of precise measurability of the risk of mistaken conviction, to the availability of reasonable but imprecise and fallible estimates, many field and empirical studies show that often the risk of mistaken conviction based on naked statistical evidence can be estimated to a similar extent as the risk of mistaken conviction based on any other sort of evidence.","PeriodicalId":48724,"journal":{"name":"Law Probability & Risk","volume":"19 1","pages":"67-83"},"PeriodicalIF":1.4000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/lpr/mgaa001","citationCount":"1","resultStr":"{\"title\":\"Decision-theoretic and risk-based approaches to naked statistical evidence: some consequences and challenges\",\"authors\":\"Rafal Urbaniak;Alicja Kowalewska;Pavel Janda;Patryk Dziurosz-Serafinowicz\",\"doi\":\"10.1093/lpr/mgaa001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the debate about the legal value of naked statistical evidence, Di Bello argues that (1) the likelihood ratio of such evidence is unknown, (2) the decision-theoretic considerations indicate that a conviction based on such evidence is unacceptable when expected utility maximization is combined with fairness constraints, and (3) the risk of mistaken conviction based on such evidence cannot be evaluated and is potentially too high. We argue that Di Bello's argument for (1) works in a rather narrow context, and that (1) is not exactly in line with the way expert witnesses are required to formulate their opinions. Consequently, Di Bello's argument for (2), which assumes (1), does not apply uniformly to all convictions based on naked evidence. Moreover, if Di Bello's analysis is correct, it applies also to eyewitness testimony, given empirical results about its quality, and so the distinctions drawn by DiBello cut across the distinction between naked statistical evidence and other types of evidence. Finally, if we weaken the rather strong requirement of precise measurability of the risk of mistaken conviction, to the availability of reasonable but imprecise and fallible estimates, many field and empirical studies show that often the risk of mistaken conviction based on naked statistical evidence can be estimated to a similar extent as the risk of mistaken conviction based on any other sort of evidence.\",\"PeriodicalId\":48724,\"journal\":{\"name\":\"Law Probability & Risk\",\"volume\":\"19 1\",\"pages\":\"67-83\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/lpr/mgaa001\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Law Probability & Risk\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9254203/\",\"RegionNum\":4,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LAW\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Law Probability & Risk","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9254203/","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LAW","Score":null,"Total":0}
Decision-theoretic and risk-based approaches to naked statistical evidence: some consequences and challenges
In the debate about the legal value of naked statistical evidence, Di Bello argues that (1) the likelihood ratio of such evidence is unknown, (2) the decision-theoretic considerations indicate that a conviction based on such evidence is unacceptable when expected utility maximization is combined with fairness constraints, and (3) the risk of mistaken conviction based on such evidence cannot be evaluated and is potentially too high. We argue that Di Bello's argument for (1) works in a rather narrow context, and that (1) is not exactly in line with the way expert witnesses are required to formulate their opinions. Consequently, Di Bello's argument for (2), which assumes (1), does not apply uniformly to all convictions based on naked evidence. Moreover, if Di Bello's analysis is correct, it applies also to eyewitness testimony, given empirical results about its quality, and so the distinctions drawn by DiBello cut across the distinction between naked statistical evidence and other types of evidence. Finally, if we weaken the rather strong requirement of precise measurability of the risk of mistaken conviction, to the availability of reasonable but imprecise and fallible estimates, many field and empirical studies show that often the risk of mistaken conviction based on naked statistical evidence can be estimated to a similar extent as the risk of mistaken conviction based on any other sort of evidence.
期刊介绍:
Law, Probability & Risk is a fully refereed journal which publishes papers dealing with topics on the interface of law and probabilistic reasoning. These are interpreted broadly to include aspects relevant to the interpretation of scientific evidence, the assessment of uncertainty and the assessment of risk. The readership includes academic lawyers, mathematicians, statisticians and social scientists with interests in quantitative reasoning.
The primary objective of the journal is to cover issues in law, which have a scientific element, with an emphasis on statistical and probabilistic issues and the assessment of risk.
Examples of topics which may be covered include communications law, computers and the law, environmental law, law and medicine, regulatory law for science and technology, identification problems (such as DNA but including other materials), sampling issues (drugs, computer pornography, fraud), offender profiling, credit scoring, risk assessment, the role of statistics and probability in drafting legislation, the assessment of competing theories of evidence (possibly with a view to forming an optimal combination of them). In addition, a whole new area is emerging in the application of computers to medicine and other safety-critical areas. New legislation is required to define the responsibility of computer experts who develop software for tackling these safety-critical problems.