{"title":"利用概率匹配方法比较雷达观测到的龙卷风和非龙卷风MCS单元","authors":"Amanda M. Murphy, C. Homeyer","doi":"10.1175/jamc-d-23-0070.1","DOIUrl":null,"url":null,"abstract":"\nForecasting tornadogenesis remains a difficult problem in meteorology, especially for short-lived, predominantly non-supercellular tornadic storms embedded within mesoscale convective systems (MCSs). This study compares populations of tornadic non-supercellular MCS storm cells to their nontornadic counterparts, focusing on nontornadic storms that have similar radar characteristics to tornadic storms. Comparison of single-polarization radar variables during storm lifetimes show that median values of low-level, mid-level, and column-maximum azimuthal shear, as well as low-level radial divergence, enable the highest degree of separation between tornadic and nontornadic storms. Focusing on low-level azimuthal shear values, null storms were randomly selected such that the distribution of null low-level azimuthal shear values matches the distribution of tornadic values. After isolating the null cases from the nontornadic population, signatures emerge in single-polarization data that enable discrimination between nontornadic and tornadic storms. In comparison, dual-polarization variables show little deviation between storm types. Tornadic storms both at tornadogenesis and at 20-minute lead time show collocation of the primary storm updraft with enhanced near-surface rotation and convergence, facilitating the non-mesocyclonic tornadogenesis processes.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Radar-Observed Tornadic and Nontornadic MCS Cells using Probability Matched Means\",\"authors\":\"Amanda M. Murphy, C. Homeyer\",\"doi\":\"10.1175/jamc-d-23-0070.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nForecasting tornadogenesis remains a difficult problem in meteorology, especially for short-lived, predominantly non-supercellular tornadic storms embedded within mesoscale convective systems (MCSs). This study compares populations of tornadic non-supercellular MCS storm cells to their nontornadic counterparts, focusing on nontornadic storms that have similar radar characteristics to tornadic storms. Comparison of single-polarization radar variables during storm lifetimes show that median values of low-level, mid-level, and column-maximum azimuthal shear, as well as low-level radial divergence, enable the highest degree of separation between tornadic and nontornadic storms. Focusing on low-level azimuthal shear values, null storms were randomly selected such that the distribution of null low-level azimuthal shear values matches the distribution of tornadic values. After isolating the null cases from the nontornadic population, signatures emerge in single-polarization data that enable discrimination between nontornadic and tornadic storms. In comparison, dual-polarization variables show little deviation between storm types. Tornadic storms both at tornadogenesis and at 20-minute lead time show collocation of the primary storm updraft with enhanced near-surface rotation and convergence, facilitating the non-mesocyclonic tornadogenesis processes.\",\"PeriodicalId\":15027,\"journal\":{\"name\":\"Journal of Applied Meteorology and Climatology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Meteorology and Climatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jamc-d-23-0070.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology and Climatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jamc-d-23-0070.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Comparison of Radar-Observed Tornadic and Nontornadic MCS Cells using Probability Matched Means
Forecasting tornadogenesis remains a difficult problem in meteorology, especially for short-lived, predominantly non-supercellular tornadic storms embedded within mesoscale convective systems (MCSs). This study compares populations of tornadic non-supercellular MCS storm cells to their nontornadic counterparts, focusing on nontornadic storms that have similar radar characteristics to tornadic storms. Comparison of single-polarization radar variables during storm lifetimes show that median values of low-level, mid-level, and column-maximum azimuthal shear, as well as low-level radial divergence, enable the highest degree of separation between tornadic and nontornadic storms. Focusing on low-level azimuthal shear values, null storms were randomly selected such that the distribution of null low-level azimuthal shear values matches the distribution of tornadic values. After isolating the null cases from the nontornadic population, signatures emerge in single-polarization data that enable discrimination between nontornadic and tornadic storms. In comparison, dual-polarization variables show little deviation between storm types. Tornadic storms both at tornadogenesis and at 20-minute lead time show collocation of the primary storm updraft with enhanced near-surface rotation and convergence, facilitating the non-mesocyclonic tornadogenesis processes.
期刊介绍:
The Journal of Applied Meteorology and Climatology (JAMC) (ISSN: 1558-8424; eISSN: 1558-8432) publishes applied research on meteorology and climatology. Examples of meteorological research include topics such as weather modification, satellite meteorology, radar meteorology, boundary layer processes, physical meteorology, air pollution meteorology (including dispersion and chemical processes), agricultural and forest meteorology, mountain meteorology, and applied meteorological numerical models. Examples of climatological research include the use of climate information in impact assessments, dynamical and statistical downscaling, seasonal climate forecast applications and verification, climate risk and vulnerability, development of climate monitoring tools, and urban and local climates.