关于具有规定分支的驯服扩张

IF 0.5 4区 数学 Q3 MATHEMATICS
F. Hajir, Christian Maire, Ravi Ramakrishna
{"title":"关于具有规定分支的驯服扩张","authors":"F. Hajir, Christian Maire, Ravi Ramakrishna","doi":"10.4153/s0008439523000498","DOIUrl":null,"url":null,"abstract":"\n The tame Gras–Munnier Theorem gives a criterion for the existence of a \n \n \n \n$ {\\mathbb Z}/p{\\mathbb Z} $\n\n \n -extension of a number field K ramified at exactly a tame set S of places of K, the finite \n \n \n \n$v \\in S$\n\n \n necessarily having norm \n \n \n \n$1$\n\n \n mod p. The criterion is the existence of a nontrivial dependence relation on the Frobenius elements of these places in a certain governing extension. We give a short new proof which extends the theorem by showing the subset of elements of \n \n \n \n$H^1(G_S,{\\mathbb {Z}}/p{\\mathbb {Z}})$\n\n \n giving rise to such extensions of K has the same cardinality as the set of these dependence relations. We then reprove the key Proposition 2.2 using the more sophisticated Greenberg–Wiles formula based on global duality.","PeriodicalId":55280,"journal":{"name":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On tame -extensions with prescribed ramification\",\"authors\":\"F. Hajir, Christian Maire, Ravi Ramakrishna\",\"doi\":\"10.4153/s0008439523000498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The tame Gras–Munnier Theorem gives a criterion for the existence of a \\n \\n \\n \\n$ {\\\\mathbb Z}/p{\\\\mathbb Z} $\\n\\n \\n -extension of a number field K ramified at exactly a tame set S of places of K, the finite \\n \\n \\n \\n$v \\\\in S$\\n\\n \\n necessarily having norm \\n \\n \\n \\n$1$\\n\\n \\n mod p. The criterion is the existence of a nontrivial dependence relation on the Frobenius elements of these places in a certain governing extension. We give a short new proof which extends the theorem by showing the subset of elements of \\n \\n \\n \\n$H^1(G_S,{\\\\mathbb {Z}}/p{\\\\mathbb {Z}})$\\n\\n \\n giving rise to such extensions of K has the same cardinality as the set of these dependence relations. We then reprove the key Proposition 2.2 using the more sophisticated Greenberg–Wiles formula based on global duality.\",\"PeriodicalId\":55280,\"journal\":{\"name\":\"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008439523000498\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/s0008439523000498","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

温和的grass - munnier定理给出了一个准则,证明在K的一个温和的位置集S上分支的数域K的$ {\mathbb Z}/p{\mathbb Z} $ -扩展的存在性,S$中的有限的$v \必然具有范数$1$ mod p。该准则是在一定的控制扩展中,这些位置的Frobenius元素的非平凡依赖关系的存在性。我们给出了一个简短的新证明,它通过证明$H^1(G_S,{\mathbb {Z}}/p{\mathbb {Z}})$的元素子集与这些依赖关系的集合具有相同的基数来扩展定理。然后,我们使用基于全局对偶性的更复杂的Greenberg-Wiles公式来反驳关键命题2.2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On tame -extensions with prescribed ramification
The tame Gras–Munnier Theorem gives a criterion for the existence of a $ {\mathbb Z}/p{\mathbb Z} $ -extension of a number field K ramified at exactly a tame set S of places of K, the finite $v \in S$ necessarily having norm $1$ mod p. The criterion is the existence of a nontrivial dependence relation on the Frobenius elements of these places in a certain governing extension. We give a short new proof which extends the theorem by showing the subset of elements of $H^1(G_S,{\mathbb {Z}}/p{\mathbb {Z}})$ giving rise to such extensions of K has the same cardinality as the set of these dependence relations. We then reprove the key Proposition 2.2 using the more sophisticated Greenberg–Wiles formula based on global duality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
68
审稿时长
24 months
期刊介绍: The Canadian Mathematical Bulletin was established in 1958 to publish original, high-quality research papers in all branches of mathematics and to accommodate the growing demand for shorter research papers. The Bulletin is a companion publication to the Canadian Journal of Mathematics that publishes longer papers. New research papers are published continuously online and collated into print issues four times each year. To be submitted to the Bulletin, papers should be at most 18 pages long and may be written in English or in French. Longer papers should be submitted to the Canadian Journal of Mathematics. Fondé en 1958, le Bulletin canadien de mathématiques (BCM) publie des articles d’avant-garde et de grande qualité dans toutes les branches des mathématiques, de même que pour répondre à la demande croissante d’articles scientifiques plus brefs. Le BCM se veut une publication complémentaire au Journal canadien de mathématiques, qui publie de longs articles. En ligne, il propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés quatre fois par année. Les textes présentés au BCM doivent compter au plus 18 pages et être rédigés en anglais ou en français. C’est le Journal canadien de mathématiques qui reçoit les articles plus longs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信