{"title":"关于具有规定分支的驯服扩张","authors":"F. Hajir, Christian Maire, Ravi Ramakrishna","doi":"10.4153/s0008439523000498","DOIUrl":null,"url":null,"abstract":"\n The tame Gras–Munnier Theorem gives a criterion for the existence of a \n \n \n \n$ {\\mathbb Z}/p{\\mathbb Z} $\n\n \n -extension of a number field K ramified at exactly a tame set S of places of K, the finite \n \n \n \n$v \\in S$\n\n \n necessarily having norm \n \n \n \n$1$\n\n \n mod p. The criterion is the existence of a nontrivial dependence relation on the Frobenius elements of these places in a certain governing extension. We give a short new proof which extends the theorem by showing the subset of elements of \n \n \n \n$H^1(G_S,{\\mathbb {Z}}/p{\\mathbb {Z}})$\n\n \n giving rise to such extensions of K has the same cardinality as the set of these dependence relations. We then reprove the key Proposition 2.2 using the more sophisticated Greenberg–Wiles formula based on global duality.","PeriodicalId":55280,"journal":{"name":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On tame -extensions with prescribed ramification\",\"authors\":\"F. Hajir, Christian Maire, Ravi Ramakrishna\",\"doi\":\"10.4153/s0008439523000498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The tame Gras–Munnier Theorem gives a criterion for the existence of a \\n \\n \\n \\n$ {\\\\mathbb Z}/p{\\\\mathbb Z} $\\n\\n \\n -extension of a number field K ramified at exactly a tame set S of places of K, the finite \\n \\n \\n \\n$v \\\\in S$\\n\\n \\n necessarily having norm \\n \\n \\n \\n$1$\\n\\n \\n mod p. The criterion is the existence of a nontrivial dependence relation on the Frobenius elements of these places in a certain governing extension. We give a short new proof which extends the theorem by showing the subset of elements of \\n \\n \\n \\n$H^1(G_S,{\\\\mathbb {Z}}/p{\\\\mathbb {Z}})$\\n\\n \\n giving rise to such extensions of K has the same cardinality as the set of these dependence relations. We then reprove the key Proposition 2.2 using the more sophisticated Greenberg–Wiles formula based on global duality.\",\"PeriodicalId\":55280,\"journal\":{\"name\":\"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008439523000498\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/s0008439523000498","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The tame Gras–Munnier Theorem gives a criterion for the existence of a
$ {\mathbb Z}/p{\mathbb Z} $
-extension of a number field K ramified at exactly a tame set S of places of K, the finite
$v \in S$
necessarily having norm
$1$
mod p. The criterion is the existence of a nontrivial dependence relation on the Frobenius elements of these places in a certain governing extension. We give a short new proof which extends the theorem by showing the subset of elements of
$H^1(G_S,{\mathbb {Z}}/p{\mathbb {Z}})$
giving rise to such extensions of K has the same cardinality as the set of these dependence relations. We then reprove the key Proposition 2.2 using the more sophisticated Greenberg–Wiles formula based on global duality.
期刊介绍:
The Canadian Mathematical Bulletin was established in 1958 to publish original, high-quality research papers in all branches of mathematics and to accommodate the growing demand for shorter research papers. The Bulletin is a companion publication to the Canadian Journal of Mathematics that publishes longer papers. New research papers are published continuously online and collated into print issues four times each year.
To be submitted to the Bulletin, papers should be at most 18 pages long and may be written in English or in French. Longer papers should be submitted to the Canadian Journal of Mathematics.
Fondé en 1958, le Bulletin canadien de mathématiques (BCM) publie des articles d’avant-garde et de grande qualité dans toutes les branches des mathématiques, de même que pour répondre à la demande croissante d’articles scientifiques plus brefs. Le BCM se veut une publication complémentaire au Journal canadien de mathématiques, qui publie de longs articles. En ligne, il propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés quatre fois par année.
Les textes présentés au BCM doivent compter au plus 18 pages et être rédigés en anglais ou en français. C’est le Journal canadien de mathématiques qui reçoit les articles plus longs.