R. Andriamifidisoa, R. M. Lalasoa, T. Rabeherimanana
{"title":"F[X_1,…,X_s]/中多环码作为理想的基础","authors":"R. Andriamifidisoa, R. M. Lalasoa, T. Rabeherimanana","doi":"10.22124/JART.2018.10977.1110","DOIUrl":null,"url":null,"abstract":"First, we apply the method presented by Zahra Sepasdar in the two-dimensional case to construct a basis of a three dimensional cyclic code. We then generalize this construction to a general $s$-dimensional cyclic code.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"6 1","pages":"63-78"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Basis of a multicyclic code as an Ideal in F[X_1,...,X_s]/\",\"authors\":\"R. Andriamifidisoa, R. M. Lalasoa, T. Rabeherimanana\",\"doi\":\"10.22124/JART.2018.10977.1110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"First, we apply the method presented by Zahra Sepasdar in the two-dimensional case to construct a basis of a three dimensional cyclic code. We then generalize this construction to a general $s$-dimensional cyclic code.\",\"PeriodicalId\":52302,\"journal\":{\"name\":\"Journal of Algebra and Related Topics\",\"volume\":\"6 1\",\"pages\":\"63-78\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Related Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22124/JART.2018.10977.1110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2018.10977.1110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Basis of a multicyclic code as an Ideal in F[X_1,...,X_s]/
First, we apply the method presented by Zahra Sepasdar in the two-dimensional case to construct a basis of a three dimensional cyclic code. We then generalize this construction to a general $s$-dimensional cyclic code.