{"title":"醋酸锌的有机合成及其催化研究进展","authors":"Dr. Ravi Varala, M. Alam, Vittal Seema","doi":"10.2174/1570193x20666230507213511","DOIUrl":null,"url":null,"abstract":"\n\nAmong the many zinc salts that can be found, zinc acetate is one of the readily available, affordable, low-hazardous Lewis acids. It can be referred to as a multifunctional catalyst due to its unique physical and chemical properties, which show that they are effective in enabling a variety of synthetic transformations in both organic synthesis and catalysis. This review included noteworthy innovations that have been created during the past two and half decades using zinc acetate as a catalyst or reagent.\n","PeriodicalId":18632,"journal":{"name":"Mini-reviews in Organic Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zinc Acetate in Organic Synthesis and Catalysis: A Review\",\"authors\":\"Dr. Ravi Varala, M. Alam, Vittal Seema\",\"doi\":\"10.2174/1570193x20666230507213511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nAmong the many zinc salts that can be found, zinc acetate is one of the readily available, affordable, low-hazardous Lewis acids. It can be referred to as a multifunctional catalyst due to its unique physical and chemical properties, which show that they are effective in enabling a variety of synthetic transformations in both organic synthesis and catalysis. This review included noteworthy innovations that have been created during the past two and half decades using zinc acetate as a catalyst or reagent.\\n\",\"PeriodicalId\":18632,\"journal\":{\"name\":\"Mini-reviews in Organic Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mini-reviews in Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/1570193x20666230507213511\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mini-reviews in Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/1570193x20666230507213511","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Zinc Acetate in Organic Synthesis and Catalysis: A Review
Among the many zinc salts that can be found, zinc acetate is one of the readily available, affordable, low-hazardous Lewis acids. It can be referred to as a multifunctional catalyst due to its unique physical and chemical properties, which show that they are effective in enabling a variety of synthetic transformations in both organic synthesis and catalysis. This review included noteworthy innovations that have been created during the past two and half decades using zinc acetate as a catalyst or reagent.
期刊介绍:
Mini-Reviews in Organic Chemistry is a peer reviewed journal which publishes original reviews on all areas of organic chemistry including organic synthesis, bioorganic and medicinal chemistry, natural product chemistry, molecular recognition, and physical organic chemistry. The emphasis will be on publishing quality papers very rapidly, without any charges.
The journal encourages submission of reviews on emerging fields of organic chemistry including:
Bioorganic Chemistry
Carbohydrate Chemistry
Chemical Biology
Chemical Process Research
Computational Organic Chemistry
Development of Synthetic Methodologies
Functional Organic Materials
Heterocyclic Chemistry
Macromolecular Chemistry
Natural Products Isolation And Synthesis
New Synthetic Methodology
Organic Reactions
Organocatalysis
Organometallic Chemistry
Theoretical Organic Chemistry
Polymer Chemistry
Stereochemistry
Structural Investigations
Supramolecular Chemistry