最古老的足类藻类是形成磷光体的导火索

A. Mienasova
{"title":"最古老的足类藻类是形成磷光体的导火索","authors":"A. Mienasova","doi":"10.31996/MRU.2019.1.21-25","DOIUrl":null,"url":null,"abstract":"The phosphorites are rather widely represented in platform carbonate and quartz-glauconite litho-tectonic complexes. They are also present in Kalyus Beds of Nagoryany Formation in Podolian Middle Dnister area.These beds are folded by homogeneous, dark-grey to black, thin-bedded mudstones. Characteristic feature of the beds is the occurrence of phosphorite concretions of different sizes. Dispersed phosphate mineralization (4–30 %) is also present in mudstones. Kalyus Beds have two levels enriched by remains of Vendotaenian algae. Lower level is located in the bottom surface and upper level is located near top surface. It is the most ancient and numerous imprints of algae in rocks of Upper Vendian. According to the general appearance of thalli, the nature of sporangia and the type of metabolism, they are referred to as brown algae, which were adopting a benthic lifestyle. And they include an assemblage of microphytofossils too. The black color, the presence of globular pyrite, the bitumen interlayers and the value of the protoxid module – 1,32–1,83 indicate the conditions for sedimentation recovery. Algal textures say that sedimentation occurred in the euphotic zone, that is, at the depth of light penetration. This is confirmed by the ecology of modern brown algae, which live from the low-water line to a depth of 20–30 m.In the Late Vendian, there was no terrestrial vegetation, therefore sloping substrates eroded much faster and the land was a vast plain almost at the level of the water’s edge. The coastline (in the modern sense) didn’t exist, it constantly migrated and this led to the fact that in the “coastal zone” formed numerous gulfs, overgrown with algae. The main source of phosphorus was the weathering crust of the subsilicic tuffogenic rocks with a high content of Р2О5. Then, phosphoric compounds fell into the sedimentation basin and assimilated by cyanobacteria and algae in the form of polyphosphoric acids. Cyanobacterial communities had multidirectional vectors of their life activity, so ones created various biochemical barriers. Acidic medium was for dissolving apatite and/or francolite, and then alkaline one, which was necessary for phosphorus precipitation. In addition, phosphorus could be precipitated as a result of seasonal fluctuations in temperature, which led to departure of the chemical equilibrium. Also algal films and microbiofilm could hold phosphorus-containing pelitic particles on their surfaces.Land vegetation cover absent, therefore the coastline constantly migrated so the primary structure of algal mats and biofilms were periodically disturbed. They were rolling, sticking, etc. took place. As a result, thrombolytics (nonlayered clot structures) were formed. Further lithification takes place under reducing conditions at the bottom and at the top of the sediment. If the concentration of phosphorus is high in sludge waters, phosphorite concretions can form from thrombolites then.","PeriodicalId":52937,"journal":{"name":"Mineral''ni resursi Ukraini","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MOST ANCIENT PODOLIA’S ALGAE AS TRIGGER FOR THE FORMATION OF PHOSPHORITES\",\"authors\":\"A. Mienasova\",\"doi\":\"10.31996/MRU.2019.1.21-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The phosphorites are rather widely represented in platform carbonate and quartz-glauconite litho-tectonic complexes. They are also present in Kalyus Beds of Nagoryany Formation in Podolian Middle Dnister area.These beds are folded by homogeneous, dark-grey to black, thin-bedded mudstones. Characteristic feature of the beds is the occurrence of phosphorite concretions of different sizes. Dispersed phosphate mineralization (4–30 %) is also present in mudstones. Kalyus Beds have two levels enriched by remains of Vendotaenian algae. Lower level is located in the bottom surface and upper level is located near top surface. It is the most ancient and numerous imprints of algae in rocks of Upper Vendian. According to the general appearance of thalli, the nature of sporangia and the type of metabolism, they are referred to as brown algae, which were adopting a benthic lifestyle. And they include an assemblage of microphytofossils too. The black color, the presence of globular pyrite, the bitumen interlayers and the value of the protoxid module – 1,32–1,83 indicate the conditions for sedimentation recovery. Algal textures say that sedimentation occurred in the euphotic zone, that is, at the depth of light penetration. This is confirmed by the ecology of modern brown algae, which live from the low-water line to a depth of 20–30 m.In the Late Vendian, there was no terrestrial vegetation, therefore sloping substrates eroded much faster and the land was a vast plain almost at the level of the water’s edge. The coastline (in the modern sense) didn’t exist, it constantly migrated and this led to the fact that in the “coastal zone” formed numerous gulfs, overgrown with algae. The main source of phosphorus was the weathering crust of the subsilicic tuffogenic rocks with a high content of Р2О5. Then, phosphoric compounds fell into the sedimentation basin and assimilated by cyanobacteria and algae in the form of polyphosphoric acids. Cyanobacterial communities had multidirectional vectors of their life activity, so ones created various biochemical barriers. Acidic medium was for dissolving apatite and/or francolite, and then alkaline one, which was necessary for phosphorus precipitation. In addition, phosphorus could be precipitated as a result of seasonal fluctuations in temperature, which led to departure of the chemical equilibrium. Also algal films and microbiofilm could hold phosphorus-containing pelitic particles on their surfaces.Land vegetation cover absent, therefore the coastline constantly migrated so the primary structure of algal mats and biofilms were periodically disturbed. They were rolling, sticking, etc. took place. As a result, thrombolytics (nonlayered clot structures) were formed. Further lithification takes place under reducing conditions at the bottom and at the top of the sediment. If the concentration of phosphorus is high in sludge waters, phosphorite concretions can form from thrombolites then.\",\"PeriodicalId\":52937,\"journal\":{\"name\":\"Mineral''ni resursi Ukraini\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineral''ni resursi Ukraini\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31996/MRU.2019.1.21-25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineral''ni resursi Ukraini","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31996/MRU.2019.1.21-25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

磷矿在地台碳酸盐岩和石英-海绿石-岩石构造杂岩中有相当广泛的代表性。它们也存在于Podolian Middle Dnister地区Nagoryany地层的Kalyus地层中。这些地层由均匀的深灰色至黑色薄层泥岩折叠而成。矿层的特征是出现不同大小的磷块石结核。分散的磷酸盐矿化(4–30%)也存在于泥岩中。Kalyus海床有两个由Vendotaenia藻类遗骸富集的层次。下层位于底部表面,上层位于顶部表面附近。它是上文甸岩石中最古老、数量最多的藻类印记。根据铊的一般外观、孢子囊的性质和代谢类型,它们被称为褐藻,采用底栖生活方式。它们还包括一组微细胞化石。黑色、球状黄铁矿的存在、沥青夹层和原氧化物模块的值–1,32–1,83表明沉积恢复的条件。藻类纹理表明,沉积发生在透光带,即光穿透的深度。现代褐藻的生态学证实了这一点,它们生活在20–30米深的低水位线上。在晚文第阶,没有陆地植被,因此斜坡基底侵蚀得更快,土地几乎在水边是一片广阔的平原。海岸线(在现代意义上)并不存在,它不断迁移,这导致了在“海岸带”形成了大量的海湾,藻类丛生。磷的主要来源是具有高含量Р2О5的次硅化凝灰岩的风化壳。然后,磷酸化合物落入沉淀池,以多磷酸的形式被蓝藻和藻类同化。蓝藻群落具有多向的生命活动载体,因此它们产生了各种生物化学屏障。酸性介质用于溶解磷灰石和/或方沸石,然后是碱性介质,这是磷沉淀所必需的。此外,磷可能由于温度的季节性波动而沉淀,从而导致化学平衡的偏离。藻类膜和微生物膜也可以将含磷的泥质颗粒保持在它们的表面。陆地植被覆盖缺失,因此海岸线不断迁移,因此藻类席和生物膜的初级结构受到周期性干扰。发生了滚动、卡住等情况。结果,形成了血栓溶解物(非层状血栓结构)。进一步的岩化作用在沉积物底部和顶部的还原条件下发生。如果污泥水中的磷浓度较高,则磷块石可形成磷块石结核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MOST ANCIENT PODOLIA’S ALGAE AS TRIGGER FOR THE FORMATION OF PHOSPHORITES
The phosphorites are rather widely represented in platform carbonate and quartz-glauconite litho-tectonic complexes. They are also present in Kalyus Beds of Nagoryany Formation in Podolian Middle Dnister area.These beds are folded by homogeneous, dark-grey to black, thin-bedded mudstones. Characteristic feature of the beds is the occurrence of phosphorite concretions of different sizes. Dispersed phosphate mineralization (4–30 %) is also present in mudstones. Kalyus Beds have two levels enriched by remains of Vendotaenian algae. Lower level is located in the bottom surface and upper level is located near top surface. It is the most ancient and numerous imprints of algae in rocks of Upper Vendian. According to the general appearance of thalli, the nature of sporangia and the type of metabolism, they are referred to as brown algae, which were adopting a benthic lifestyle. And they include an assemblage of microphytofossils too. The black color, the presence of globular pyrite, the bitumen interlayers and the value of the protoxid module – 1,32–1,83 indicate the conditions for sedimentation recovery. Algal textures say that sedimentation occurred in the euphotic zone, that is, at the depth of light penetration. This is confirmed by the ecology of modern brown algae, which live from the low-water line to a depth of 20–30 m.In the Late Vendian, there was no terrestrial vegetation, therefore sloping substrates eroded much faster and the land was a vast plain almost at the level of the water’s edge. The coastline (in the modern sense) didn’t exist, it constantly migrated and this led to the fact that in the “coastal zone” formed numerous gulfs, overgrown with algae. The main source of phosphorus was the weathering crust of the subsilicic tuffogenic rocks with a high content of Р2О5. Then, phosphoric compounds fell into the sedimentation basin and assimilated by cyanobacteria and algae in the form of polyphosphoric acids. Cyanobacterial communities had multidirectional vectors of their life activity, so ones created various biochemical barriers. Acidic medium was for dissolving apatite and/or francolite, and then alkaline one, which was necessary for phosphorus precipitation. In addition, phosphorus could be precipitated as a result of seasonal fluctuations in temperature, which led to departure of the chemical equilibrium. Also algal films and microbiofilm could hold phosphorus-containing pelitic particles on their surfaces.Land vegetation cover absent, therefore the coastline constantly migrated so the primary structure of algal mats and biofilms were periodically disturbed. They were rolling, sticking, etc. took place. As a result, thrombolytics (nonlayered clot structures) were formed. Further lithification takes place under reducing conditions at the bottom and at the top of the sediment. If the concentration of phosphorus is high in sludge waters, phosphorite concretions can form from thrombolites then.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
6
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信