M. Vigdorowitsch, V. Ostrikov, Alexander N. Pchelintsev, I. Pchelintseva
{"title":"冲洗油去除组件表面沉积物的扩散动力学理论","authors":"M. Vigdorowitsch, V. Ostrikov, Alexander N. Pchelintsev, I. Pchelintseva","doi":"10.3390/computation11080164","DOIUrl":null,"url":null,"abstract":"The diffusion kinetics theory of cleaning assemblies such as combustion engines with flushing oil has been introduced. Evolution of tar deposits on the engine surfaces and in the lube system has been described through the erosion dynamics. The time-dependent concentration pattern related to hydrodynamic (sub)layers around the tar deposit has been uncovered. Nonlinear equations explaining the experimentally observed dependences for scouring the contaminants off with the oil have been derived and indicate the power law in time. For reference purposes, a similar analysis based on formal chemical kinetics has been accomplished. Factors and scouring parameters for the favor of either mechanism have been discussed. Any preference for either diffusion or chemical kinetics should be based on a careful selection of washing agents in the flushing oil. Future directions of studies are proposed.","PeriodicalId":52148,"journal":{"name":"Computation","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion Kinetics Theory of Removal of Assemblies’ Surface Deposits with Flushing Oil\",\"authors\":\"M. Vigdorowitsch, V. Ostrikov, Alexander N. Pchelintsev, I. Pchelintseva\",\"doi\":\"10.3390/computation11080164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The diffusion kinetics theory of cleaning assemblies such as combustion engines with flushing oil has been introduced. Evolution of tar deposits on the engine surfaces and in the lube system has been described through the erosion dynamics. The time-dependent concentration pattern related to hydrodynamic (sub)layers around the tar deposit has been uncovered. Nonlinear equations explaining the experimentally observed dependences for scouring the contaminants off with the oil have been derived and indicate the power law in time. For reference purposes, a similar analysis based on formal chemical kinetics has been accomplished. Factors and scouring parameters for the favor of either mechanism have been discussed. Any preference for either diffusion or chemical kinetics should be based on a careful selection of washing agents in the flushing oil. Future directions of studies are proposed.\",\"PeriodicalId\":52148,\"journal\":{\"name\":\"Computation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computation11080164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11080164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Diffusion Kinetics Theory of Removal of Assemblies’ Surface Deposits with Flushing Oil
The diffusion kinetics theory of cleaning assemblies such as combustion engines with flushing oil has been introduced. Evolution of tar deposits on the engine surfaces and in the lube system has been described through the erosion dynamics. The time-dependent concentration pattern related to hydrodynamic (sub)layers around the tar deposit has been uncovered. Nonlinear equations explaining the experimentally observed dependences for scouring the contaminants off with the oil have been derived and indicate the power law in time. For reference purposes, a similar analysis based on formal chemical kinetics has been accomplished. Factors and scouring parameters for the favor of either mechanism have been discussed. Any preference for either diffusion or chemical kinetics should be based on a careful selection of washing agents in the flushing oil. Future directions of studies are proposed.
期刊介绍:
Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.