关于Dirichlet–Neumann算子和Stokes波的分析性

IF 0.6 4区 数学 Q3 MATHEMATICS
M. Berti, A. Maspero, Paolo Ventura
{"title":"关于Dirichlet–Neumann算子和Stokes波的分析性","authors":"M. Berti, A. Maspero, Paolo Ventura","doi":"10.4171/rlm/983","DOIUrl":null,"url":null,"abstract":"We prove an analyticity result for the Dirichlet-Neumann operator under space periodic boundary conditions in any dimension in an unbounded domain with infinite depth. We derive an analytic bifurcation result of analytic Stokes waves –i.e. space periodic traveling solutions– of the water waves equations in deep water. MSC 2020: 76B15, 35B32, 35J05.","PeriodicalId":54497,"journal":{"name":"Rendiconti Lincei-Matematica e Applicazioni","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the analyticity of the Dirichlet–Neumann operator and Stokes waves\",\"authors\":\"M. Berti, A. Maspero, Paolo Ventura\",\"doi\":\"10.4171/rlm/983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove an analyticity result for the Dirichlet-Neumann operator under space periodic boundary conditions in any dimension in an unbounded domain with infinite depth. We derive an analytic bifurcation result of analytic Stokes waves –i.e. space periodic traveling solutions– of the water waves equations in deep water. MSC 2020: 76B15, 35B32, 35J05.\",\"PeriodicalId\":54497,\"journal\":{\"name\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rlm/983\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti Lincei-Matematica e Applicazioni","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rlm/983","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

证明了无限深度无界域上任意维空间周期边界条件下Dirichlet-Neumann算子的解析性结果。我们得到了解析Stokes波的解析分岔结果,即。深水中水波方程的空间周期行解。MSC 2020: 76b15, 35b32, 35j05。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the analyticity of the Dirichlet–Neumann operator and Stokes waves
We prove an analyticity result for the Dirichlet-Neumann operator under space periodic boundary conditions in any dimension in an unbounded domain with infinite depth. We derive an analytic bifurcation result of analytic Stokes waves –i.e. space periodic traveling solutions– of the water waves equations in deep water. MSC 2020: 76B15, 35B32, 35J05.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rendiconti Lincei-Matematica e Applicazioni
Rendiconti Lincei-Matematica e Applicazioni MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.30
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: The journal is dedicated to the publication of high-quality peer-reviewed surveys, research papers and preliminary announcements of important results from all fields of mathematics and its applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信