Keyi Cheng, Stefan Inzer, Adrian Leung, Xiaoxian Shen, Michael Perlmutter, Michael Lindstrom, Joyce A. Chew, Todd Presner, D. Needell
{"title":"多尺度杂交主题建模:一种基于主题建模的非结构化文本数据分析管道","authors":"Keyi Cheng, Stefan Inzer, Adrian Leung, Xiaoxian Shen, Michael Perlmutter, Michael Lindstrom, Joyce A. Chew, Todd Presner, D. Needell","doi":"10.1137/22s1536832","DOIUrl":null,"url":null,"abstract":"We propose a multi-scale hybridized topic modeling method to find hidden topics from transcribed interviews more accurately and efficiently than traditional topic modeling methods. Our multi-scale hybridized topic modeling method (MSHTM) approaches data at different scales and performs topic modeling in a hierarchical way utilizing first a classical method, Nonnegative Matrix Factorization, and then a transformer-based method, BERTopic. It harnesses the strengths of both NMF and BERTopic. Our method can help researchers and the public better extract and interpret the interview information. Additionally, it provides insights for new indexing systems based on the topic level. We then deploy our method on real-world interview transcripts and find promising results.","PeriodicalId":93373,"journal":{"name":"SIAM undergraduate research online","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-scale Hybridized Topic Modeling: A Pipeline for Analyzing Unstructured Text Datasets via Topic Modeling\",\"authors\":\"Keyi Cheng, Stefan Inzer, Adrian Leung, Xiaoxian Shen, Michael Perlmutter, Michael Lindstrom, Joyce A. Chew, Todd Presner, D. Needell\",\"doi\":\"10.1137/22s1536832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a multi-scale hybridized topic modeling method to find hidden topics from transcribed interviews more accurately and efficiently than traditional topic modeling methods. Our multi-scale hybridized topic modeling method (MSHTM) approaches data at different scales and performs topic modeling in a hierarchical way utilizing first a classical method, Nonnegative Matrix Factorization, and then a transformer-based method, BERTopic. It harnesses the strengths of both NMF and BERTopic. Our method can help researchers and the public better extract and interpret the interview information. Additionally, it provides insights for new indexing systems based on the topic level. We then deploy our method on real-world interview transcripts and find promising results.\",\"PeriodicalId\":93373,\"journal\":{\"name\":\"SIAM undergraduate research online\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM undergraduate research online\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22s1536832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM undergraduate research online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22s1536832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-scale Hybridized Topic Modeling: A Pipeline for Analyzing Unstructured Text Datasets via Topic Modeling
We propose a multi-scale hybridized topic modeling method to find hidden topics from transcribed interviews more accurately and efficiently than traditional topic modeling methods. Our multi-scale hybridized topic modeling method (MSHTM) approaches data at different scales and performs topic modeling in a hierarchical way utilizing first a classical method, Nonnegative Matrix Factorization, and then a transformer-based method, BERTopic. It harnesses the strengths of both NMF and BERTopic. Our method can help researchers and the public better extract and interpret the interview information. Additionally, it provides insights for new indexing systems based on the topic level. We then deploy our method on real-world interview transcripts and find promising results.