多尺度杂交主题建模:一种基于主题建模的非结构化文本数据分析管道

Keyi Cheng, Stefan Inzer, Adrian Leung, Xiaoxian Shen, Michael Perlmutter, Michael Lindstrom, Joyce A. Chew, Todd Presner, D. Needell
{"title":"多尺度杂交主题建模:一种基于主题建模的非结构化文本数据分析管道","authors":"Keyi Cheng, Stefan Inzer, Adrian Leung, Xiaoxian Shen, Michael Perlmutter, Michael Lindstrom, Joyce A. Chew, Todd Presner, D. Needell","doi":"10.1137/22s1536832","DOIUrl":null,"url":null,"abstract":"We propose a multi-scale hybridized topic modeling method to find hidden topics from transcribed interviews more accurately and efficiently than traditional topic modeling methods. Our multi-scale hybridized topic modeling method (MSHTM) approaches data at different scales and performs topic modeling in a hierarchical way utilizing first a classical method, Nonnegative Matrix Factorization, and then a transformer-based method, BERTopic. It harnesses the strengths of both NMF and BERTopic. Our method can help researchers and the public better extract and interpret the interview information. Additionally, it provides insights for new indexing systems based on the topic level. We then deploy our method on real-world interview transcripts and find promising results.","PeriodicalId":93373,"journal":{"name":"SIAM undergraduate research online","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-scale Hybridized Topic Modeling: A Pipeline for Analyzing Unstructured Text Datasets via Topic Modeling\",\"authors\":\"Keyi Cheng, Stefan Inzer, Adrian Leung, Xiaoxian Shen, Michael Perlmutter, Michael Lindstrom, Joyce A. Chew, Todd Presner, D. Needell\",\"doi\":\"10.1137/22s1536832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a multi-scale hybridized topic modeling method to find hidden topics from transcribed interviews more accurately and efficiently than traditional topic modeling methods. Our multi-scale hybridized topic modeling method (MSHTM) approaches data at different scales and performs topic modeling in a hierarchical way utilizing first a classical method, Nonnegative Matrix Factorization, and then a transformer-based method, BERTopic. It harnesses the strengths of both NMF and BERTopic. Our method can help researchers and the public better extract and interpret the interview information. Additionally, it provides insights for new indexing systems based on the topic level. We then deploy our method on real-world interview transcripts and find promising results.\",\"PeriodicalId\":93373,\"journal\":{\"name\":\"SIAM undergraduate research online\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM undergraduate research online\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22s1536832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM undergraduate research online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22s1536832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种多尺度混合话题建模方法,可以比传统的话题建模方法更准确、更有效地从采访笔录中发现隐藏话题。我们的多尺度杂交主题建模方法(MSHTM)首先利用经典的非负矩阵分解方法(non - negative Matrix Factorization)和基于变压器的BERTopic方法(BERTopic)来处理不同尺度的数据,并以层次方式进行主题建模。它利用了NMF和BERTopic的优势。我们的方法可以帮助研究者和公众更好地提取和解读访谈信息。此外,它还提供了基于主题级别的新索引系统的见解。然后,我们将我们的方法应用于现实世界的面试记录,并找到了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-scale Hybridized Topic Modeling: A Pipeline for Analyzing Unstructured Text Datasets via Topic Modeling
We propose a multi-scale hybridized topic modeling method to find hidden topics from transcribed interviews more accurately and efficiently than traditional topic modeling methods. Our multi-scale hybridized topic modeling method (MSHTM) approaches data at different scales and performs topic modeling in a hierarchical way utilizing first a classical method, Nonnegative Matrix Factorization, and then a transformer-based method, BERTopic. It harnesses the strengths of both NMF and BERTopic. Our method can help researchers and the public better extract and interpret the interview information. Additionally, it provides insights for new indexing systems based on the topic level. We then deploy our method on real-world interview transcripts and find promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信