Xiaohong Lu, Zhenyuan Jia, Hua Wang, Xiaochen Hu, G. Li, Li-kun Si
{"title":"基于测量的铬镍铁合金718微铣削切削力建模","authors":"Xiaohong Lu, Zhenyuan Jia, Hua Wang, Xiaochen Hu, G. Li, Li-kun Si","doi":"10.1504/IJNM.2017.10003131","DOIUrl":null,"url":null,"abstract":"Due to its superior properties, nickel-based superalloy Inconel 718 can meet the requirements of micro parts with the high strength at high temperatures which have three-dimensional geometry structure like stepped surface, deep-hole, thin wall and so on. However, Inconel 718 is difficult to cut. Now, there are few researches on the cutting forces in micro-milling of Inconel 718, and the micro-milling mechanism of nickel-based superalloy is almost blank, while the prediction and control of micro-milling forces is important to reveal the micro-milling mechanism of nickel-based superalloy, to realise processing parameter optimisation, to reduce the tool wear, etc... To predict the cutting forces during micro-milling Inconel 718 process, coated carbide tools are used to micro-milling micro groove on Inconel 718, and the orthogonal type experiments are adopted. The influences of cutting parameters on cutting forces are studied. The micro-milling forces prediction model is built based on the experimental results, which can be used to predict the cutting forces during micro-milling of Inconel 718 nickel-based superalloy. To prove the validity of the built model, the significance test and fitting degree test are conducted.","PeriodicalId":14170,"journal":{"name":"International Journal of Nanomanufacturing","volume":"13 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Measurement-based modelling of cutting forces in micro-milling of Inconel 718\",\"authors\":\"Xiaohong Lu, Zhenyuan Jia, Hua Wang, Xiaochen Hu, G. Li, Li-kun Si\",\"doi\":\"10.1504/IJNM.2017.10003131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to its superior properties, nickel-based superalloy Inconel 718 can meet the requirements of micro parts with the high strength at high temperatures which have three-dimensional geometry structure like stepped surface, deep-hole, thin wall and so on. However, Inconel 718 is difficult to cut. Now, there are few researches on the cutting forces in micro-milling of Inconel 718, and the micro-milling mechanism of nickel-based superalloy is almost blank, while the prediction and control of micro-milling forces is important to reveal the micro-milling mechanism of nickel-based superalloy, to realise processing parameter optimisation, to reduce the tool wear, etc... To predict the cutting forces during micro-milling Inconel 718 process, coated carbide tools are used to micro-milling micro groove on Inconel 718, and the orthogonal type experiments are adopted. The influences of cutting parameters on cutting forces are studied. The micro-milling forces prediction model is built based on the experimental results, which can be used to predict the cutting forces during micro-milling of Inconel 718 nickel-based superalloy. To prove the validity of the built model, the significance test and fitting degree test are conducted.\",\"PeriodicalId\":14170,\"journal\":{\"name\":\"International Journal of Nanomanufacturing\",\"volume\":\"13 1\",\"pages\":\"1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomanufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJNM.2017.10003131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNM.2017.10003131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Measurement-based modelling of cutting forces in micro-milling of Inconel 718
Due to its superior properties, nickel-based superalloy Inconel 718 can meet the requirements of micro parts with the high strength at high temperatures which have three-dimensional geometry structure like stepped surface, deep-hole, thin wall and so on. However, Inconel 718 is difficult to cut. Now, there are few researches on the cutting forces in micro-milling of Inconel 718, and the micro-milling mechanism of nickel-based superalloy is almost blank, while the prediction and control of micro-milling forces is important to reveal the micro-milling mechanism of nickel-based superalloy, to realise processing parameter optimisation, to reduce the tool wear, etc... To predict the cutting forces during micro-milling Inconel 718 process, coated carbide tools are used to micro-milling micro groove on Inconel 718, and the orthogonal type experiments are adopted. The influences of cutting parameters on cutting forces are studied. The micro-milling forces prediction model is built based on the experimental results, which can be used to predict the cutting forces during micro-milling of Inconel 718 nickel-based superalloy. To prove the validity of the built model, the significance test and fitting degree test are conducted.