{"title":"水溶液中致癌生物碱烟碱还原六氯铱酸盐(IV)的动力学和机理及烟碱电离常数的测定","authors":"R. Hassan, S. Ibrahim","doi":"10.2174/2213337209666220329141541","DOIUrl":null,"url":null,"abstract":"\n\nNicotine (NIC) is a lipid soluble alkaloid found predominately in tobacco and tobacco products including cigarettes, cigars and oral tobacco products such as snuff and chewing tobacco. Since nicotine substrate is the major constituent of tobacco smoke, it may cause negatively impacted problems to the human healthcare which keeps many users hooked.\n\n\n\nA spectrophotometric technique has been applied for investigating the kinetics of reduction of hexachloroiridiate (IV) as inert one-equivalent oxidant by carcinogenic nicotine (NIC) in aqueous perchlorate solutions.\n\n\n\nFirst-order in [IrCl6]2- and fractional-first-order with respect to the nicotine concentration has been revealed. Kinetic evidence for formation of 1: 1 intermediate complex between the NIC and [IrCl6]2- prior to the rate-determining step was confirmed.\n\n\n\nThe ionization constants of nicotine was evaluated from the kinetic data and has been found to be 8.57x10-4 and 4.57 x 10-4 moldm-3 at ionic strength of 0.5 moldm-3 and at 30˚C and 40˚C, respectively. The activation parameters have been deduced from the kinetic results of the temperature-dependence of rate constants and a plausible reaction mechanism of the redox reaction is suggested and discussed. Nicotinic acid (Vitamin B3) was formed as oxidation product of nicotine oxidation.\n","PeriodicalId":10945,"journal":{"name":"Current Organocatalysis","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Kinetics and mechanism of reduction of hexacholoroiridate (IV) by carcinogenic nicotine as alkaloid in aqueous solutions with determination of ionization constant of nicotine\",\"authors\":\"R. Hassan, S. Ibrahim\",\"doi\":\"10.2174/2213337209666220329141541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nNicotine (NIC) is a lipid soluble alkaloid found predominately in tobacco and tobacco products including cigarettes, cigars and oral tobacco products such as snuff and chewing tobacco. Since nicotine substrate is the major constituent of tobacco smoke, it may cause negatively impacted problems to the human healthcare which keeps many users hooked.\\n\\n\\n\\nA spectrophotometric technique has been applied for investigating the kinetics of reduction of hexachloroiridiate (IV) as inert one-equivalent oxidant by carcinogenic nicotine (NIC) in aqueous perchlorate solutions.\\n\\n\\n\\nFirst-order in [IrCl6]2- and fractional-first-order with respect to the nicotine concentration has been revealed. Kinetic evidence for formation of 1: 1 intermediate complex between the NIC and [IrCl6]2- prior to the rate-determining step was confirmed.\\n\\n\\n\\nThe ionization constants of nicotine was evaluated from the kinetic data and has been found to be 8.57x10-4 and 4.57 x 10-4 moldm-3 at ionic strength of 0.5 moldm-3 and at 30˚C and 40˚C, respectively. The activation parameters have been deduced from the kinetic results of the temperature-dependence of rate constants and a plausible reaction mechanism of the redox reaction is suggested and discussed. Nicotinic acid (Vitamin B3) was formed as oxidation product of nicotine oxidation.\\n\",\"PeriodicalId\":10945,\"journal\":{\"name\":\"Current Organocatalysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Organocatalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2213337209666220329141541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organocatalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2213337209666220329141541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Kinetics and mechanism of reduction of hexacholoroiridate (IV) by carcinogenic nicotine as alkaloid in aqueous solutions with determination of ionization constant of nicotine
Nicotine (NIC) is a lipid soluble alkaloid found predominately in tobacco and tobacco products including cigarettes, cigars and oral tobacco products such as snuff and chewing tobacco. Since nicotine substrate is the major constituent of tobacco smoke, it may cause negatively impacted problems to the human healthcare which keeps many users hooked.
A spectrophotometric technique has been applied for investigating the kinetics of reduction of hexachloroiridiate (IV) as inert one-equivalent oxidant by carcinogenic nicotine (NIC) in aqueous perchlorate solutions.
First-order in [IrCl6]2- and fractional-first-order with respect to the nicotine concentration has been revealed. Kinetic evidence for formation of 1: 1 intermediate complex between the NIC and [IrCl6]2- prior to the rate-determining step was confirmed.
The ionization constants of nicotine was evaluated from the kinetic data and has been found to be 8.57x10-4 and 4.57 x 10-4 moldm-3 at ionic strength of 0.5 moldm-3 and at 30˚C and 40˚C, respectively. The activation parameters have been deduced from the kinetic results of the temperature-dependence of rate constants and a plausible reaction mechanism of the redox reaction is suggested and discussed. Nicotinic acid (Vitamin B3) was formed as oxidation product of nicotine oxidation.
期刊介绍:
Current Organocatalysis is an international peer-reviewed journal that publishes significant research in all areas of organocatalysis. The journal covers organo homogeneous/heterogeneous catalysis, innovative mechanistic studies and kinetics of organocatalytic processes focusing on practical, theoretical and computational aspects. It also includes potential applications of organocatalysts in the fields of drug discovery, synthesis of novel molecules, synthetic method development, green chemistry and chemoenzymatic reactions. This journal also accepts papers on methods, reagents, and mechanism of a synthetic process and technology pertaining to chemistry. Moreover, this journal features full-length/mini review articles within organocatalysis and synthetic chemistry. It is the premier source of organocatalysis and synthetic methods related information for chemists, biologists and engineers pursuing research in industry and academia.