快速扩散方程解的各向异性和各向同性持久奇点

IF 1.8 4区 数学 Q1 MATHEMATICS
M. Fila, Petra Mackov'a, J. Takahashi, E. Yanagida
{"title":"快速扩散方程解的各向异性和各向同性持久奇点","authors":"M. Fila, Petra Mackov'a, J. Takahashi, E. Yanagida","doi":"10.57262/die035-1112-729","DOIUrl":null,"url":null,"abstract":"Abstract. The aim of this paper is to study a class of positive solutions of the fast diffusion equation with specific persistent singular behavior. First, we construct new types of solutions with anisotropic singularities. Depending on parameters, either these solutions solve the original equation in the distributional sense, or they are not locally integrable in space-time. We show that the latter also holds for solutions with snaking singularities, whose existence has been proved recently by M. Fila, J.R. King, J. Takahashi, and E. Yanagida. Moreover, we establish that in the distributional sense, isotropic solutions whose existence was proved by M. Fila, J. Takahashi, and E. Yanagida in 2019, actually solve the corresponding problem with a moving Dirac source term. Last, we discuss the existence of solutions with anisotropic singularities in a critical case.","PeriodicalId":50581,"journal":{"name":"Differential and Integral Equations","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Anisotropic and isotropic persistent singularities of solutions of the fast diffusion equation\",\"authors\":\"M. Fila, Petra Mackov'a, J. Takahashi, E. Yanagida\",\"doi\":\"10.57262/die035-1112-729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The aim of this paper is to study a class of positive solutions of the fast diffusion equation with specific persistent singular behavior. First, we construct new types of solutions with anisotropic singularities. Depending on parameters, either these solutions solve the original equation in the distributional sense, or they are not locally integrable in space-time. We show that the latter also holds for solutions with snaking singularities, whose existence has been proved recently by M. Fila, J.R. King, J. Takahashi, and E. Yanagida. Moreover, we establish that in the distributional sense, isotropic solutions whose existence was proved by M. Fila, J. Takahashi, and E. Yanagida in 2019, actually solve the corresponding problem with a moving Dirac source term. Last, we discuss the existence of solutions with anisotropic singularities in a critical case.\",\"PeriodicalId\":50581,\"journal\":{\"name\":\"Differential and Integral Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential and Integral Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/die035-1112-729\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential and Integral Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/die035-1112-729","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

摘要研究一类具有特定持久奇异行为的快速扩散方程的正解。首先,构造了具有各向异性奇异点的新型解。根据参数的不同,这些解要么在分布意义上解原方程,要么在时空中不局部可积。我们证明后者也适用于具有蛇形奇点的解,蛇形奇点的存在性最近已被M. Fila, J.R. King, J. Takahashi和E. Yanagida证明。此外,我们建立了在分布意义上,M. Fila, J. Takahashi和E. Yanagida在2019年证明的各向同性解的存在性实际上解决了带有移动Dirac源项的相应问题。最后,讨论了一类临界情况下各向异性奇异解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anisotropic and isotropic persistent singularities of solutions of the fast diffusion equation
Abstract. The aim of this paper is to study a class of positive solutions of the fast diffusion equation with specific persistent singular behavior. First, we construct new types of solutions with anisotropic singularities. Depending on parameters, either these solutions solve the original equation in the distributional sense, or they are not locally integrable in space-time. We show that the latter also holds for solutions with snaking singularities, whose existence has been proved recently by M. Fila, J.R. King, J. Takahashi, and E. Yanagida. Moreover, we establish that in the distributional sense, isotropic solutions whose existence was proved by M. Fila, J. Takahashi, and E. Yanagida in 2019, actually solve the corresponding problem with a moving Dirac source term. Last, we discuss the existence of solutions with anisotropic singularities in a critical case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Differential and Integral Equations
Differential and Integral Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Differential and Integral Equations will publish carefully selected research papers on mathematical aspects of differential and integral equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new, and of interest to a substantial number of mathematicians working in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信