水分对整体式桥台土力学特性及土桩相互作用的影响

Pub Date : 2021-01-16 DOI:10.3233/BRS-200175
J. Razmi
{"title":"水分对整体式桥台土力学特性及土桩相互作用的影响","authors":"J. Razmi","doi":"10.3233/BRS-200175","DOIUrl":null,"url":null,"abstract":"Mechanical properties of soil are function of many parameters. Moisture content is one of the key factors that impact the soil’s mechanical properties. Soil-pile interaction and pile displacement in bridges can, therefore, be impacted by the moisture content. In particular, pile displacement in Integral Abutment Bridges (IABs) due to daily and seasonal temperature variations is a problem that has been under investigation. IABs don’t have joint and as a result all the load and deformation in the slab is transferred to piles. If piles are deformed beyond their yield point, plastic deformation can occur. The objective of this study is to evaluate the moisture content effect on the interaction of pile and soil and the resulting pile displacement through computational modeling. An ANSYS Finite Element Model (FEM) is used to repeatedly change the moisture content of the soil and adjust the properties and compute the displacement in the piles. It is shown that increasing the moisture content decreases several key parameters such as bulk density, young’s modulus, cohesion and Poisson’s ratio. The simulation results indicate higher displacements of the piles as the moisture content increases. This behavior can be explained by decreased elastic modulus. As a result, soil behaves more flexible and allows more displacement of the pile.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BRS-200175","citationCount":"0","resultStr":"{\"title\":\"Effect of moisture on mechanical characteristic of soil and interaction of soil-pile in integral abutment bridges\",\"authors\":\"J. Razmi\",\"doi\":\"10.3233/BRS-200175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mechanical properties of soil are function of many parameters. Moisture content is one of the key factors that impact the soil’s mechanical properties. Soil-pile interaction and pile displacement in bridges can, therefore, be impacted by the moisture content. In particular, pile displacement in Integral Abutment Bridges (IABs) due to daily and seasonal temperature variations is a problem that has been under investigation. IABs don’t have joint and as a result all the load and deformation in the slab is transferred to piles. If piles are deformed beyond their yield point, plastic deformation can occur. The objective of this study is to evaluate the moisture content effect on the interaction of pile and soil and the resulting pile displacement through computational modeling. An ANSYS Finite Element Model (FEM) is used to repeatedly change the moisture content of the soil and adjust the properties and compute the displacement in the piles. It is shown that increasing the moisture content decreases several key parameters such as bulk density, young’s modulus, cohesion and Poisson’s ratio. The simulation results indicate higher displacements of the piles as the moisture content increases. This behavior can be explained by decreased elastic modulus. As a result, soil behaves more flexible and allows more displacement of the pile.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/BRS-200175\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/BRS-200175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/BRS-200175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

土壤的力学性质是许多参数的函数。水分含量是影响土壤力学性能的关键因素之一。因此,桥梁中的土-桩相互作用和桩位移会受到含水量的影响。特别是,由于日常和季节性温度变化,整体桥台桥(IABs)中的桩位移是一个正在研究的问题。IAB没有接头,因此板中的所有载荷和变形都转移到桩上。如果桩变形超过其屈服点,则可能发生塑性变形。本研究的目的是通过计算建模来评估含水量对桩土相互作用的影响以及由此产生的桩位移。使用ANSYS有限元模型(FEM)反复改变土壤的含水量,调整特性并计算桩的位移。结果表明,含水率的增加降低了体积密度、杨氏模量、内聚力和泊松比等关键参数。模拟结果表明,随着含水量的增加,桩的位移越来越大。这种行为可以用弹性模量的降低来解释。因此,土壤表现出更大的灵活性,并允许桩产生更多的位移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Effect of moisture on mechanical characteristic of soil and interaction of soil-pile in integral abutment bridges
Mechanical properties of soil are function of many parameters. Moisture content is one of the key factors that impact the soil’s mechanical properties. Soil-pile interaction and pile displacement in bridges can, therefore, be impacted by the moisture content. In particular, pile displacement in Integral Abutment Bridges (IABs) due to daily and seasonal temperature variations is a problem that has been under investigation. IABs don’t have joint and as a result all the load and deformation in the slab is transferred to piles. If piles are deformed beyond their yield point, plastic deformation can occur. The objective of this study is to evaluate the moisture content effect on the interaction of pile and soil and the resulting pile displacement through computational modeling. An ANSYS Finite Element Model (FEM) is used to repeatedly change the moisture content of the soil and adjust the properties and compute the displacement in the piles. It is shown that increasing the moisture content decreases several key parameters such as bulk density, young’s modulus, cohesion and Poisson’s ratio. The simulation results indicate higher displacements of the piles as the moisture content increases. This behavior can be explained by decreased elastic modulus. As a result, soil behaves more flexible and allows more displacement of the pile.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信