可压缩介质Euler方程中的冲击波

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
Tai-Ping Liu
{"title":"可压缩介质Euler方程中的冲击波","authors":"Tai-Ping Liu","doi":"10.1142/s0219891621500235","DOIUrl":null,"url":null,"abstract":"Shock waves of arbitrary strength in the Euler equations for compressible media are studied. The admissibility condition for a shock wave is shown to be equivalent to its formation according to the entropy production criterion. The Riemann problem with large data has a unique admissible solutions. These quantitative results are based on the exact global expressions for the basic physical variables as the states move along the Hugoniot and wave curves.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Shock waves in Euler equations for compressible medium\",\"authors\":\"Tai-Ping Liu\",\"doi\":\"10.1142/s0219891621500235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shock waves of arbitrary strength in the Euler equations for compressible media are studied. The admissibility condition for a shock wave is shown to be equivalent to its formation according to the entropy production criterion. The Riemann problem with large data has a unique admissible solutions. These quantitative results are based on the exact global expressions for the basic physical variables as the states move along the Hugoniot and wave curves.\",\"PeriodicalId\":50182,\"journal\":{\"name\":\"Journal of Hyperbolic Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hyperbolic Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219891621500235\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219891621500235","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

研究了可压缩介质欧拉方程中任意强度的冲击波。根据熵产生准则,证明了冲击波的可容许条件等价于其形成。具有大数据的黎曼问题具有唯一的可容许解。这些定量结果是基于当状态沿着Hugoniot和波动曲线移动时基本物理变量的精确全局表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shock waves in Euler equations for compressible medium
Shock waves of arbitrary strength in the Euler equations for compressible media are studied. The admissibility condition for a shock wave is shown to be equivalent to its formation according to the entropy production criterion. The Riemann problem with large data has a unique admissible solutions. These quantitative results are based on the exact global expressions for the basic physical variables as the states move along the Hugoniot and wave curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hyperbolic Differential Equations
Journal of Hyperbolic Differential Equations 数学-物理:数学物理
CiteScore
1.10
自引率
0.00%
发文量
15
审稿时长
24 months
期刊介绍: This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in: Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions. Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc. Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations. Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc. General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations. Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信