{"title":"基于改进生成对抗网络的社交机器人视觉隐私行为识别","authors":"Guanci Yang, Jiacheng Lin, Zhidong Su, Yang Li","doi":"10.1049/cvi2.12231","DOIUrl":null,"url":null,"abstract":"<p>Although social robots equipped with visual devices may leak user information, countermeasures for ensuring privacy are not readily available, making visual privacy protection problematic. In this article, a semi-supervised learning algorithm is proposed for visual privacy behaviour recognition based on an improved generative adversarial network for social robots; it is called PBR-GAN. A 9-layer residual generator network enhances the data quality, and a 10-layer discriminator network strengthens the feature extraction. A tailored objective function, loss function, and strategy are proposed to dynamically adjust the learning rate to guarantee high performance. A social robot platform and architecture for visual privacy recognition and protection are implemented. The recognition accuracy of the proposed PBR-GAN is compared with Inception_v3, SS-GAN, and SF-GAN. The average recognition accuracy of the proposed PBR-GAN is 85.91%, which is improved by 3.93%, 9.91%, and 1.73% compared with the performance of Inception_v3, SS-GAN, and SF-GAN respectively. Through a case study, seven situations are considered related to privacy at home, and develop training and test datasets with 8,720 and 1,280 images, respectively, are developed. The proposed PBR-GAN recognises the designed visual privacy information with an average accuracy of 89.91%.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 1","pages":"110-123"},"PeriodicalIF":1.5000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12231","citationCount":"0","resultStr":"{\"title\":\"Visual privacy behaviour recognition for social robots based on an improved generative adversarial network\",\"authors\":\"Guanci Yang, Jiacheng Lin, Zhidong Su, Yang Li\",\"doi\":\"10.1049/cvi2.12231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although social robots equipped with visual devices may leak user information, countermeasures for ensuring privacy are not readily available, making visual privacy protection problematic. In this article, a semi-supervised learning algorithm is proposed for visual privacy behaviour recognition based on an improved generative adversarial network for social robots; it is called PBR-GAN. A 9-layer residual generator network enhances the data quality, and a 10-layer discriminator network strengthens the feature extraction. A tailored objective function, loss function, and strategy are proposed to dynamically adjust the learning rate to guarantee high performance. A social robot platform and architecture for visual privacy recognition and protection are implemented. The recognition accuracy of the proposed PBR-GAN is compared with Inception_v3, SS-GAN, and SF-GAN. The average recognition accuracy of the proposed PBR-GAN is 85.91%, which is improved by 3.93%, 9.91%, and 1.73% compared with the performance of Inception_v3, SS-GAN, and SF-GAN respectively. Through a case study, seven situations are considered related to privacy at home, and develop training and test datasets with 8,720 and 1,280 images, respectively, are developed. The proposed PBR-GAN recognises the designed visual privacy information with an average accuracy of 89.91%.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"18 1\",\"pages\":\"110-123\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12231\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12231\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12231","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Visual privacy behaviour recognition for social robots based on an improved generative adversarial network
Although social robots equipped with visual devices may leak user information, countermeasures for ensuring privacy are not readily available, making visual privacy protection problematic. In this article, a semi-supervised learning algorithm is proposed for visual privacy behaviour recognition based on an improved generative adversarial network for social robots; it is called PBR-GAN. A 9-layer residual generator network enhances the data quality, and a 10-layer discriminator network strengthens the feature extraction. A tailored objective function, loss function, and strategy are proposed to dynamically adjust the learning rate to guarantee high performance. A social robot platform and architecture for visual privacy recognition and protection are implemented. The recognition accuracy of the proposed PBR-GAN is compared with Inception_v3, SS-GAN, and SF-GAN. The average recognition accuracy of the proposed PBR-GAN is 85.91%, which is improved by 3.93%, 9.91%, and 1.73% compared with the performance of Inception_v3, SS-GAN, and SF-GAN respectively. Through a case study, seven situations are considered related to privacy at home, and develop training and test datasets with 8,720 and 1,280 images, respectively, are developed. The proposed PBR-GAN recognises the designed visual privacy information with an average accuracy of 89.91%.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf