{"title":"P1$${P}_1$$–具有周期边界条件的非协调四边形有限元空间:第一部分:尺寸、基、求解器和误差分析的基本结果","authors":"Jaeryun Yim, D. Sheen","doi":"10.1002/num.23023","DOIUrl":null,"url":null,"abstract":"The P1$$ {P}_1 $$ –nonconforming quadrilateral finite element space with periodic boundary conditions is investigated. The dimension and basis for the space are characterized by using the concept of minimally essential discrete boundary conditions. We show that the situation is different based on the parity of the number of discretizations on coordinates. Based on the analysis on the space, we propose several numerical schemes for elliptic problems with periodic boundary conditions. Some of these numerical schemes are related to solving linear equations consisting of non‐invertible matrices. By courtesy of the Drazin inverse, the existence of corresponding numerical solutions is guaranteed. The theoretical relation between the numerical solutions is derived, and it is confirmed by numerical results. Finally, the extension to the three dimensions is provided.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"39 1","pages":"3725 - 3753"},"PeriodicalIF":2.1000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"P1$$ {P}_1 $$ –Nonconforming quadrilateral finite element space with periodic boundary conditions: Part I. Fundamental results on dimensions, bases, solvers, and error analysis\",\"authors\":\"Jaeryun Yim, D. Sheen\",\"doi\":\"10.1002/num.23023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The P1$$ {P}_1 $$ –nonconforming quadrilateral finite element space with periodic boundary conditions is investigated. The dimension and basis for the space are characterized by using the concept of minimally essential discrete boundary conditions. We show that the situation is different based on the parity of the number of discretizations on coordinates. Based on the analysis on the space, we propose several numerical schemes for elliptic problems with periodic boundary conditions. Some of these numerical schemes are related to solving linear equations consisting of non‐invertible matrices. By courtesy of the Drazin inverse, the existence of corresponding numerical solutions is guaranteed. The theoretical relation between the numerical solutions is derived, and it is confirmed by numerical results. Finally, the extension to the three dimensions is provided.\",\"PeriodicalId\":19443,\"journal\":{\"name\":\"Numerical Methods for Partial Differential Equations\",\"volume\":\"39 1\",\"pages\":\"3725 - 3753\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Methods for Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23023\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23023","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
P1$$ {P}_1 $$ –Nonconforming quadrilateral finite element space with periodic boundary conditions: Part I. Fundamental results on dimensions, bases, solvers, and error analysis
The P1$$ {P}_1 $$ –nonconforming quadrilateral finite element space with periodic boundary conditions is investigated. The dimension and basis for the space are characterized by using the concept of minimally essential discrete boundary conditions. We show that the situation is different based on the parity of the number of discretizations on coordinates. Based on the analysis on the space, we propose several numerical schemes for elliptic problems with periodic boundary conditions. Some of these numerical schemes are related to solving linear equations consisting of non‐invertible matrices. By courtesy of the Drazin inverse, the existence of corresponding numerical solutions is guaranteed. The theoretical relation between the numerical solutions is derived, and it is confirmed by numerical results. Finally, the extension to the three dimensions is provided.
期刊介绍:
An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.