{"title":"2012-2021年间,微波辐射加速了水介导的生物活性杂环化合物的绿色合成:十年更新","authors":"Kantharaju Kamanna, Yamanappagouda Amaregouda","doi":"10.2174/2213337210666230626105521","DOIUrl":null,"url":null,"abstract":"\n\nThe diverse field of chemistry demands various greener pathways in our quest to maintain sustainability. The utilization of energy inputs (mechanochemistry, ultrasound, or microwave irradiation), photochemistry, and greener reaction media being applied to organic synthesis are the key trends in the greener and sustainable process development in the current synthetic chemistry. These strategic methods aim to address the majority of the green chemistry principles, developing functional chemicals with less amount of waste production. In the synthesis of biologically potential heterocyclic molecules, green chemistry is a topic of great interest. It encompasses all branches of chemistry and is found in the notion of conducting chemical reactions while also conserving the environment through pollution-free chemical synthesis. Water as a solvent media is an excellent choice of solvent in organic synthesis development in the present day, as it is highly abundant, nontoxic, and non-combustible. Medicinal chemists have recently focused their attention on environmentally friendly procedures that use greener solvent media. Using water as a solvent, several studies on the process of optimization and selectivity have been reported, and the combination with microwave irradiation has emerged as a green chemistry protocol to produce high atom economy and yields. In this review, we have compiled microwave-assisted organic synthesis in aqueous media, including examples of the most cutting-edge methodologies employed for the heterocyclic scaffolds used in medicinal chemistry. It covers the most valuable advanced synthetics taking place in the area of heterocyclic molecule synthesis, between the decennary period of 2012 to 2021. The reported work discusses both synthetic and pharmacological applications.\n","PeriodicalId":10945,"journal":{"name":"Current Organocatalysis","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water Mediated Green Method Synthesis of Bioactive Heterocycles Reported Between 2012-2021 Accelerated by Microwave Irradiation: A Decennary Update\",\"authors\":\"Kantharaju Kamanna, Yamanappagouda Amaregouda\",\"doi\":\"10.2174/2213337210666230626105521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nThe diverse field of chemistry demands various greener pathways in our quest to maintain sustainability. The utilization of energy inputs (mechanochemistry, ultrasound, or microwave irradiation), photochemistry, and greener reaction media being applied to organic synthesis are the key trends in the greener and sustainable process development in the current synthetic chemistry. These strategic methods aim to address the majority of the green chemistry principles, developing functional chemicals with less amount of waste production. In the synthesis of biologically potential heterocyclic molecules, green chemistry is a topic of great interest. It encompasses all branches of chemistry and is found in the notion of conducting chemical reactions while also conserving the environment through pollution-free chemical synthesis. Water as a solvent media is an excellent choice of solvent in organic synthesis development in the present day, as it is highly abundant, nontoxic, and non-combustible. Medicinal chemists have recently focused their attention on environmentally friendly procedures that use greener solvent media. Using water as a solvent, several studies on the process of optimization and selectivity have been reported, and the combination with microwave irradiation has emerged as a green chemistry protocol to produce high atom economy and yields. In this review, we have compiled microwave-assisted organic synthesis in aqueous media, including examples of the most cutting-edge methodologies employed for the heterocyclic scaffolds used in medicinal chemistry. It covers the most valuable advanced synthetics taking place in the area of heterocyclic molecule synthesis, between the decennary period of 2012 to 2021. The reported work discusses both synthetic and pharmacological applications.\\n\",\"PeriodicalId\":10945,\"journal\":{\"name\":\"Current Organocatalysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Organocatalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2213337210666230626105521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organocatalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2213337210666230626105521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Water Mediated Green Method Synthesis of Bioactive Heterocycles Reported Between 2012-2021 Accelerated by Microwave Irradiation: A Decennary Update
The diverse field of chemistry demands various greener pathways in our quest to maintain sustainability. The utilization of energy inputs (mechanochemistry, ultrasound, or microwave irradiation), photochemistry, and greener reaction media being applied to organic synthesis are the key trends in the greener and sustainable process development in the current synthetic chemistry. These strategic methods aim to address the majority of the green chemistry principles, developing functional chemicals with less amount of waste production. In the synthesis of biologically potential heterocyclic molecules, green chemistry is a topic of great interest. It encompasses all branches of chemistry and is found in the notion of conducting chemical reactions while also conserving the environment through pollution-free chemical synthesis. Water as a solvent media is an excellent choice of solvent in organic synthesis development in the present day, as it is highly abundant, nontoxic, and non-combustible. Medicinal chemists have recently focused their attention on environmentally friendly procedures that use greener solvent media. Using water as a solvent, several studies on the process of optimization and selectivity have been reported, and the combination with microwave irradiation has emerged as a green chemistry protocol to produce high atom economy and yields. In this review, we have compiled microwave-assisted organic synthesis in aqueous media, including examples of the most cutting-edge methodologies employed for the heterocyclic scaffolds used in medicinal chemistry. It covers the most valuable advanced synthetics taking place in the area of heterocyclic molecule synthesis, between the decennary period of 2012 to 2021. The reported work discusses both synthetic and pharmacological applications.
期刊介绍:
Current Organocatalysis is an international peer-reviewed journal that publishes significant research in all areas of organocatalysis. The journal covers organo homogeneous/heterogeneous catalysis, innovative mechanistic studies and kinetics of organocatalytic processes focusing on practical, theoretical and computational aspects. It also includes potential applications of organocatalysts in the fields of drug discovery, synthesis of novel molecules, synthetic method development, green chemistry and chemoenzymatic reactions. This journal also accepts papers on methods, reagents, and mechanism of a synthetic process and technology pertaining to chemistry. Moreover, this journal features full-length/mini review articles within organocatalysis and synthetic chemistry. It is the premier source of organocatalysis and synthetic methods related information for chemists, biologists and engineers pursuing research in industry and academia.