金藤特征多项式的二次系数

Pub Date : 2022-12-17 DOI:10.1007/s00026-022-00611-5
Mikołaj Marciniak
{"title":"金藤特征多项式的二次系数","authors":"Mikołaj Marciniak","doi":"10.1007/s00026-022-00611-5","DOIUrl":null,"url":null,"abstract":"<div><p>Goulden–Rattan polynomials give the exact value of the subdominant part of the normalized characters of the symmetric groups in terms of certain quantities <span>\\((C_i)\\)</span> which describe the macroscopic shape of the Young diagram. The Goulden–Rattan positivity conjecture states that the coefficients of these polynomials are positive rational numbers with small denominators. We prove a special case of this conjecture for the coefficient of the quadratic term <span>\\(C_2^2\\)</span> by applying certain bijections involving maps (i.e., graphs drawn on surfaces).</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00026-022-00611-5.pdf","citationCount":"2","resultStr":"{\"title\":\"Quadratic Coefficients of Goulden–Rattan Character Polynomials\",\"authors\":\"Mikołaj Marciniak\",\"doi\":\"10.1007/s00026-022-00611-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Goulden–Rattan polynomials give the exact value of the subdominant part of the normalized characters of the symmetric groups in terms of certain quantities <span>\\\\((C_i)\\\\)</span> which describe the macroscopic shape of the Young diagram. The Goulden–Rattan positivity conjecture states that the coefficients of these polynomials are positive rational numbers with small denominators. We prove a special case of this conjecture for the coefficient of the quadratic term <span>\\\\(C_2^2\\\\)</span> by applying certain bijections involving maps (i.e., graphs drawn on surfaces).</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00026-022-00611-5.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-022-00611-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-022-00611-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Goulden–Rattan多项式根据描述Young图宏观形状的某些量\((C_i)\)给出了对称群的归一化特征的子主导部分的精确值。Goulden–Rattan正猜想指出,这些多项式的系数是具有小分母的正有理数。通过应用某些涉及映射的双射(即在曲面上绘制的图),我们证明了二次项(C_2^2)的系数的这一猜想的一个特例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quadratic Coefficients of Goulden–Rattan Character Polynomials

分享
查看原文
Quadratic Coefficients of Goulden–Rattan Character Polynomials

Goulden–Rattan polynomials give the exact value of the subdominant part of the normalized characters of the symmetric groups in terms of certain quantities \((C_i)\) which describe the macroscopic shape of the Young diagram. The Goulden–Rattan positivity conjecture states that the coefficients of these polynomials are positive rational numbers with small denominators. We prove a special case of this conjecture for the coefficient of the quadratic term \(C_2^2\) by applying certain bijections involving maps (i.e., graphs drawn on surfaces).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信