基于硅技术发现自然疗法在新冠肺炎后并发症中的潜力

IF 1.7 Q3 CHEMISTRY, ORGANIC
Alkesh N Patel, Rushi Shah, Diwyanshi Zinzuvadia, Sagar Mahant, A. Patel
{"title":"基于硅技术发现自然疗法在新冠肺炎后并发症中的潜力","authors":"Alkesh N Patel, Rushi Shah, Diwyanshi Zinzuvadia, Sagar Mahant, A. Patel","doi":"10.25135/acg.oc.128.2202.2356","DOIUrl":null,"url":null,"abstract":"The first incidence of corona virus was reported in China in December of 2019, and the virus quickly spread over the world, eventually being designated a pandemic in March of 2020. It has had a disastrous impact on the global healthcare system. Virus has claimed the lives of 5,298,933 people through December 2021. As a result of the pandemic, there was a boost of research into diagnostic and therapeutic methods to infection. Gradually, the world has discovered new vaccine candidates and medicinal repurposing strategies that have a significant influence on mortality, by which there has been a drop-in death rates over the world since July, 2021. Many patients, particularly those who have been hospitalized due to a viral infection, experience complications beyond discharge that have a significant influence on their lives. Post COVID-19 complications are problems that last longer than 3-4 weeks following a viral infection. There is currently no specific treatment accessible for post COVID-19 problems because whatever medications are available or repurposed are limited to disease prophylaxis and therapeutics. As a result, we're looking for a remedy employing natural substances using the In-Silico technique (molecular docking) and recent research from reputable journals. Allicin, Berberine, Epigallocatechin, Rosmarinic acid and Withaferin-A were docked against ACE (PDB ID: 1O8A), IL-6 (PDB ID: 1ALU), NADPH Oxidase (PDB ID: 2CDU) and TNF-alpha (PDB ID: 2AZ5) using Autodock.","PeriodicalId":19553,"journal":{"name":"Organic Communications","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovering the potential of natural remedies in the post COVID-19 complications based on in silico techniques\",\"authors\":\"Alkesh N Patel, Rushi Shah, Diwyanshi Zinzuvadia, Sagar Mahant, A. Patel\",\"doi\":\"10.25135/acg.oc.128.2202.2356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first incidence of corona virus was reported in China in December of 2019, and the virus quickly spread over the world, eventually being designated a pandemic in March of 2020. It has had a disastrous impact on the global healthcare system. Virus has claimed the lives of 5,298,933 people through December 2021. As a result of the pandemic, there was a boost of research into diagnostic and therapeutic methods to infection. Gradually, the world has discovered new vaccine candidates and medicinal repurposing strategies that have a significant influence on mortality, by which there has been a drop-in death rates over the world since July, 2021. Many patients, particularly those who have been hospitalized due to a viral infection, experience complications beyond discharge that have a significant influence on their lives. Post COVID-19 complications are problems that last longer than 3-4 weeks following a viral infection. There is currently no specific treatment accessible for post COVID-19 problems because whatever medications are available or repurposed are limited to disease prophylaxis and therapeutics. As a result, we're looking for a remedy employing natural substances using the In-Silico technique (molecular docking) and recent research from reputable journals. Allicin, Berberine, Epigallocatechin, Rosmarinic acid and Withaferin-A were docked against ACE (PDB ID: 1O8A), IL-6 (PDB ID: 1ALU), NADPH Oxidase (PDB ID: 2CDU) and TNF-alpha (PDB ID: 2AZ5) using Autodock.\",\"PeriodicalId\":19553,\"journal\":{\"name\":\"Organic Communications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25135/acg.oc.128.2202.2356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25135/acg.oc.128.2202.2356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

2019年12月,中国报告了首例冠状病毒病例,该病毒迅速在世界各地传播,最终于2020年3月被指定为大流行。它对全球医疗体系产生了灾难性的影响。截至2021年12月,该病毒已夺走529893人的生命。由于新冠疫情,对感染的诊断和治疗方法的研究得到了加强。渐渐地,世界发现了对死亡率有重大影响的新的候选疫苗和药物再利用策略,自2021年7月以来,世界各地的死亡率都有所下降。许多患者,特别是那些因病毒感染而住院的患者,在出院后会出现并发症,这对他们的生活有重大影响。新冠肺炎后并发症是指病毒感染后持续3-4周以上的问题。目前没有针对新冠肺炎后问题的特定治疗方法,因为任何可用或重新利用的药物都仅限于疾病预防和治疗。因此,我们正在寻找一种利用In Silico技术(分子对接)和知名期刊最近的研究使用天然物质的疗法。使用Autodock将大蒜素、黄连素、表没食子儿茶素、迷迭香酸和Withaferin-A与ACE(PDB ID:1O8A)、IL-6(PDB ID:1ALU)、NADPH氧化酶(PDB ID:2CDU)和TNF-α(PDB ID:2AZ5)对接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovering the potential of natural remedies in the post COVID-19 complications based on in silico techniques
The first incidence of corona virus was reported in China in December of 2019, and the virus quickly spread over the world, eventually being designated a pandemic in March of 2020. It has had a disastrous impact on the global healthcare system. Virus has claimed the lives of 5,298,933 people through December 2021. As a result of the pandemic, there was a boost of research into diagnostic and therapeutic methods to infection. Gradually, the world has discovered new vaccine candidates and medicinal repurposing strategies that have a significant influence on mortality, by which there has been a drop-in death rates over the world since July, 2021. Many patients, particularly those who have been hospitalized due to a viral infection, experience complications beyond discharge that have a significant influence on their lives. Post COVID-19 complications are problems that last longer than 3-4 weeks following a viral infection. There is currently no specific treatment accessible for post COVID-19 problems because whatever medications are available or repurposed are limited to disease prophylaxis and therapeutics. As a result, we're looking for a remedy employing natural substances using the In-Silico technique (molecular docking) and recent research from reputable journals. Allicin, Berberine, Epigallocatechin, Rosmarinic acid and Withaferin-A were docked against ACE (PDB ID: 1O8A), IL-6 (PDB ID: 1ALU), NADPH Oxidase (PDB ID: 2CDU) and TNF-alpha (PDB ID: 2AZ5) using Autodock.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Organic Communications
Organic Communications CHEMISTRY, ORGANIC-
CiteScore
2.80
自引率
11.80%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信