可逆动态随机环境中随机漫步速度的不对称性

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
O. Blondel
{"title":"可逆动态随机环境中随机漫步速度的不对称性","authors":"O. Blondel","doi":"10.1214/23-ecp514","DOIUrl":null,"url":null,"abstract":"In this short note, we prove that $v(-\\epsilon)=-v(\\epsilon)$. Here, $v(\\epsilon)$ is the speed of a one-dimensional random walk in a dynamic \\emph{reversible} random environment, that jumps to the right (resp. to the left) with probability $1/2+\\epsilon$ (resp. $1/2-\\epsilon$) if it stands on an occupied site, and vice-versa on an empty site. We work in any setting where $v(\\epsilon), v(-\\epsilon)$ are well-defined, i.e. a weak LLN holds. The proof relies on a simple coupling argument that holds only in the discrete setting.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A note on the antisymmetry in the speed of a random walk in reversible dynamic random environment\",\"authors\":\"O. Blondel\",\"doi\":\"10.1214/23-ecp514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this short note, we prove that $v(-\\\\epsilon)=-v(\\\\epsilon)$. Here, $v(\\\\epsilon)$ is the speed of a one-dimensional random walk in a dynamic \\\\emph{reversible} random environment, that jumps to the right (resp. to the left) with probability $1/2+\\\\epsilon$ (resp. $1/2-\\\\epsilon$) if it stands on an occupied site, and vice-versa on an empty site. We work in any setting where $v(\\\\epsilon), v(-\\\\epsilon)$ are well-defined, i.e. a weak LLN holds. The proof relies on a simple coupling argument that holds only in the discrete setting.\",\"PeriodicalId\":50543,\"journal\":{\"name\":\"Electronic Communications in Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Communications in Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ecp514\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ecp514","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

在这篇短文中,我们证明$v(-\epsilon)=-v(\epsilon)$。这里,$v(\epsilon)$是动态\emph{可逆}随机环境中一维随机游走的速度,它向右跳跃(见图1)。到左边),概率为$1/2+\epsilon$(参见。$1/2-\epsilon$),如果它位于已占用的站点,反之亦然,如果它位于空站点。我们在$v(\epsilon), v(-\epsilon)$定义明确的任何环境中工作,即弱LLN成立。这个证明依赖于一个简单的耦合论证,这个论证只在离散的情况下成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the antisymmetry in the speed of a random walk in reversible dynamic random environment
In this short note, we prove that $v(-\epsilon)=-v(\epsilon)$. Here, $v(\epsilon)$ is the speed of a one-dimensional random walk in a dynamic \emph{reversible} random environment, that jumps to the right (resp. to the left) with probability $1/2+\epsilon$ (resp. $1/2-\epsilon$) if it stands on an occupied site, and vice-versa on an empty site. We work in any setting where $v(\epsilon), v(-\epsilon)$ are well-defined, i.e. a weak LLN holds. The proof relies on a simple coupling argument that holds only in the discrete setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Communications in Probability
Electronic Communications in Probability 工程技术-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信