超曲面中最小余维的线性子空间

IF 0.6 3区 数学 Q3 MATHEMATICS
D. Kazhdan, A. Polishchuk
{"title":"超曲面中最小余维的线性子空间","authors":"D. Kazhdan, A. Polishchuk","doi":"10.4310/mrl.2023.v30.n1.a7","DOIUrl":null,"url":null,"abstract":"Let $k$ be a perfect field and let $X\\subset {\\mathbb P}^N$ be a hypersurface of degree $d$ defined over $k$ and containing a linear subspace $L$ defined over an algebraic closure $\\overline{k}$ with $\\mathrm{codim}_{{\\mathbb P}^N}L=r$. We show that $X$ contains a linear subspace $L_0$ defined over $k$ with $\\mathrm{codim}_{{\\mathbb P}^N}L\\le dr$. We conjecture that the intersection of all linear subspaces (over $\\overline{k}$) of minimal codimension $r$ contained in $X$, has codimension bounded above only in terms of $r$ and $d$. We prove this when either $d\\le 3$ or $r\\le 2$.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Linear subspaces of minimal codimension in hypersurfaces\",\"authors\":\"D. Kazhdan, A. Polishchuk\",\"doi\":\"10.4310/mrl.2023.v30.n1.a7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $k$ be a perfect field and let $X\\\\subset {\\\\mathbb P}^N$ be a hypersurface of degree $d$ defined over $k$ and containing a linear subspace $L$ defined over an algebraic closure $\\\\overline{k}$ with $\\\\mathrm{codim}_{{\\\\mathbb P}^N}L=r$. We show that $X$ contains a linear subspace $L_0$ defined over $k$ with $\\\\mathrm{codim}_{{\\\\mathbb P}^N}L\\\\le dr$. We conjecture that the intersection of all linear subspaces (over $\\\\overline{k}$) of minimal codimension $r$ contained in $X$, has codimension bounded above only in terms of $r$ and $d$. We prove this when either $d\\\\le 3$ or $r\\\\le 2$.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2023.v30.n1.a7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n1.a7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

设$k$是一个完美域,$X\subset {\mathbb P}^N$是一个在$k$上定义的次为$d$的超曲面,它包含一个在$\mathrm{codim}_{{\mathbb P}^N}L=r$的代数闭包$\overline{k}$上定义的线性子空间$L$。我们证明$X$包含一个用$\mathrm{codim}_{{\mathbb P}^N}L\le dr$在$k$上定义的线性子空间$L_0$。我们推测所有包含在$X$中的最小余维$r$的线性子空间(在$\overline{k}$上)的交集,其余维仅以$r$和$d$有界。我们用$d\le 3$或$r\le 2$证明这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear subspaces of minimal codimension in hypersurfaces
Let $k$ be a perfect field and let $X\subset {\mathbb P}^N$ be a hypersurface of degree $d$ defined over $k$ and containing a linear subspace $L$ defined over an algebraic closure $\overline{k}$ with $\mathrm{codim}_{{\mathbb P}^N}L=r$. We show that $X$ contains a linear subspace $L_0$ defined over $k$ with $\mathrm{codim}_{{\mathbb P}^N}L\le dr$. We conjecture that the intersection of all linear subspaces (over $\overline{k}$) of minimal codimension $r$ contained in $X$, has codimension bounded above only in terms of $r$ and $d$. We prove this when either $d\le 3$ or $r\le 2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信