{"title":"酷儿李超代数晶体B(−∞)的候选","authors":"Ben Salisbury, Travis Scrimshaw","doi":"10.1215/21562261-2022-0010","DOIUrl":null,"url":null,"abstract":"It is shown that the direct limit of the semistandard decomposition tableau model for polynomial representations of the queer Lie superalgebra exists, which is believed to be the crystal for the upper half of the corresponding quantum group. An extension of this model to describe the direct limit combinatorially is given. Furthermore, it is shown that the polynomials representations may be recovered from the limit in most cases.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Candidate for the crystal B(−∞) for the queer Lie superalgebra\",\"authors\":\"Ben Salisbury, Travis Scrimshaw\",\"doi\":\"10.1215/21562261-2022-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that the direct limit of the semistandard decomposition tableau model for polynomial representations of the queer Lie superalgebra exists, which is believed to be the crystal for the upper half of the corresponding quantum group. An extension of this model to describe the direct limit combinatorially is given. Furthermore, it is shown that the polynomials representations may be recovered from the limit in most cases.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-2022-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2022-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Candidate for the crystal B(−∞) for the queer Lie superalgebra
It is shown that the direct limit of the semistandard decomposition tableau model for polynomial representations of the queer Lie superalgebra exists, which is believed to be the crystal for the upper half of the corresponding quantum group. An extension of this model to describe the direct limit combinatorially is given. Furthermore, it is shown that the polynomials representations may be recovered from the limit in most cases.