{"title":"上同调维3的henselian离散估值域的Rost可整除性","authors":"Yong Hu, Z. Wu","doi":"10.2140/akt.2020.5.677","DOIUrl":null,"url":null,"abstract":"Let $F$ be a field, $\\ell$ a prime and $D$ a central division $F$-algebra of $\\ell$-power degree. By the Rost kernel of $D$ we mean the subgroup of $F^*$ consisting of elements $\\lambda$ such that the cohomology class $(D)\\cup (\\lambda)\\in H^3(F,\\,\\mathbb{Q}_{\\ell}/\\Z_{\\ell}(2))$ vanishes. In 1985, Suslin conjectured that the Rost kernel is generated by $i$-th powers of reduced norms from $D^{\\otimes i},\\,\\forall i\\ge 1$. Despite of known counterexamples, we prove some new cases of Suslin's conjecture. We assume $F$ is a henselian discrete valuation field with residue field $k$ of characteristic different from $\\ell$. When $D$ has period $\\ell$, we show that Suslin's conjecture holds if either $k$ is a $2$-local field or the cohomological $\\ell$-dimension $\\mathrm{cd}_{\\ell}(k)$ of $k$ is $\\le 2$. When the period is arbitrary, we prove the same result when $k$ itself is a henselian discrete valuation field with $\\mathrm{cd}_{\\ell}(k)\\le 2$. In the case $\\ell=\\car(k)$ an analog is obtained for tamely ramified algebras. We conjecture that Suslin's conjecture holds for all fields of cohomological dimension 3.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Rost divisibility of henselian discrete valuation fields of cohomological dimension 3\",\"authors\":\"Yong Hu, Z. Wu\",\"doi\":\"10.2140/akt.2020.5.677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $F$ be a field, $\\\\ell$ a prime and $D$ a central division $F$-algebra of $\\\\ell$-power degree. By the Rost kernel of $D$ we mean the subgroup of $F^*$ consisting of elements $\\\\lambda$ such that the cohomology class $(D)\\\\cup (\\\\lambda)\\\\in H^3(F,\\\\,\\\\mathbb{Q}_{\\\\ell}/\\\\Z_{\\\\ell}(2))$ vanishes. In 1985, Suslin conjectured that the Rost kernel is generated by $i$-th powers of reduced norms from $D^{\\\\otimes i},\\\\,\\\\forall i\\\\ge 1$. Despite of known counterexamples, we prove some new cases of Suslin's conjecture. We assume $F$ is a henselian discrete valuation field with residue field $k$ of characteristic different from $\\\\ell$. When $D$ has period $\\\\ell$, we show that Suslin's conjecture holds if either $k$ is a $2$-local field or the cohomological $\\\\ell$-dimension $\\\\mathrm{cd}_{\\\\ell}(k)$ of $k$ is $\\\\le 2$. When the period is arbitrary, we prove the same result when $k$ itself is a henselian discrete valuation field with $\\\\mathrm{cd}_{\\\\ell}(k)\\\\le 2$. In the case $\\\\ell=\\\\car(k)$ an analog is obtained for tamely ramified algebras. We conjecture that Suslin's conjecture holds for all fields of cohomological dimension 3.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2020.5.677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2020.5.677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
设$F$是域,$\ell$是素数,$D$是$\ell$-幂次的中心除法$F$-代数。通过$D$的Rost核,我们指的是由元素$\lamba$组成的$F^*$的子群,使得H^3(F,\,\mathbb)中的上同调类$(D)\cup(\lamba){Q}_{\ell}/\Z_(2))$消失。1985年,Suslin推测Rost核是由$D^{\otimes i},\,\for all i\ge 1$的约化范数的$i$次方生成的。尽管有已知的反例,我们还是证明了Suslin猜想的一些新情况。我们假设$F$是一个henselian离散估值域,其残差域$k$的特征不同于$\ell$。当$D$具有周期$\ell$时,我们证明了如果$k$是$2$-局部域或上同调$\ell$-维数$\mathrm,Suslin猜想成立{cd}_$k$的{\ell}(k)$是$\le 2$。当周期是任意的时,当$k$本身是带有$\mathrm的henselian离散估值域时,我们证明了相同的结果{cd}_{\ell}(k)\le 2$。在$\ell=\car(k)$的情况下,得到了温和分枝代数的一个类似物。我们猜想Suslin猜想适用于上同调维数为3的所有域。
On the Rost divisibility of henselian discrete valuation fields of cohomological dimension 3
Let $F$ be a field, $\ell$ a prime and $D$ a central division $F$-algebra of $\ell$-power degree. By the Rost kernel of $D$ we mean the subgroup of $F^*$ consisting of elements $\lambda$ such that the cohomology class $(D)\cup (\lambda)\in H^3(F,\,\mathbb{Q}_{\ell}/\Z_{\ell}(2))$ vanishes. In 1985, Suslin conjectured that the Rost kernel is generated by $i$-th powers of reduced norms from $D^{\otimes i},\,\forall i\ge 1$. Despite of known counterexamples, we prove some new cases of Suslin's conjecture. We assume $F$ is a henselian discrete valuation field with residue field $k$ of characteristic different from $\ell$. When $D$ has period $\ell$, we show that Suslin's conjecture holds if either $k$ is a $2$-local field or the cohomological $\ell$-dimension $\mathrm{cd}_{\ell}(k)$ of $k$ is $\le 2$. When the period is arbitrary, we prove the same result when $k$ itself is a henselian discrete valuation field with $\mathrm{cd}_{\ell}(k)\le 2$. In the case $\ell=\car(k)$ an analog is obtained for tamely ramified algebras. We conjecture that Suslin's conjecture holds for all fields of cohomological dimension 3.