{"title":"使用RGB-D传感器检测微型飞行器的非参数背景建模和分割","authors":"Navid Dorudian, S. Lauria, S. Swift","doi":"10.1177/1756829318822327","DOIUrl":null,"url":null,"abstract":"A novel approach to detect micro air vehicles in GPS-denied environments using an external RGB-D sensor is presented. The nonparametric background subtraction technique incorporating several innovative mechanisms allows the detection of high-speed moving micro air vehicles by combining colour and depth information. The proposed method stores several colour and depth images as models and then compares each pixel from a frame with the stored models to classify the pixel as background or foreground. To adapt to scene changes, once a pixel is classified as background, the system updates the model by finding and substituting the closest pixel to the camera with the current pixel. The background model update presented uses different criteria from existing methods. Additionally, a blind update model is added to adapt to background sudden changes. The proposed architecture is compared with existing techniques using two different micro air vehicles and publicly available datasets. Results showing some improvements over existing methods are discussed.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756829318822327","citationCount":"5","resultStr":"{\"title\":\"Nonparametric background modelling and segmentation to detect micro air vehicles using RGB-D sensor\",\"authors\":\"Navid Dorudian, S. Lauria, S. Swift\",\"doi\":\"10.1177/1756829318822327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel approach to detect micro air vehicles in GPS-denied environments using an external RGB-D sensor is presented. The nonparametric background subtraction technique incorporating several innovative mechanisms allows the detection of high-speed moving micro air vehicles by combining colour and depth information. The proposed method stores several colour and depth images as models and then compares each pixel from a frame with the stored models to classify the pixel as background or foreground. To adapt to scene changes, once a pixel is classified as background, the system updates the model by finding and substituting the closest pixel to the camera with the current pixel. The background model update presented uses different criteria from existing methods. Additionally, a blind update model is added to adapt to background sudden changes. The proposed architecture is compared with existing techniques using two different micro air vehicles and publicly available datasets. Results showing some improvements over existing methods are discussed.\",\"PeriodicalId\":49053,\"journal\":{\"name\":\"International Journal of Micro Air Vehicles\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1756829318822327\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Micro Air Vehicles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1756829318822327\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Micro Air Vehicles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1756829318822327","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Nonparametric background modelling and segmentation to detect micro air vehicles using RGB-D sensor
A novel approach to detect micro air vehicles in GPS-denied environments using an external RGB-D sensor is presented. The nonparametric background subtraction technique incorporating several innovative mechanisms allows the detection of high-speed moving micro air vehicles by combining colour and depth information. The proposed method stores several colour and depth images as models and then compares each pixel from a frame with the stored models to classify the pixel as background or foreground. To adapt to scene changes, once a pixel is classified as background, the system updates the model by finding and substituting the closest pixel to the camera with the current pixel. The background model update presented uses different criteria from existing methods. Additionally, a blind update model is added to adapt to background sudden changes. The proposed architecture is compared with existing techniques using two different micro air vehicles and publicly available datasets. Results showing some improvements over existing methods are discussed.
期刊介绍:
The role of the International Journal of Micro Air Vehicles is to provide the scientific and engineering community with a peer-reviewed open access journal dedicated to publishing high-quality technical articles summarizing both fundamental and applied research in the area of micro air vehicles.