与置换相对应的一组非volterra二次算子

Q3 Mathematics
U. Jamilov
{"title":"与置换相对应的一组非volterra二次算子","authors":"U. Jamilov","doi":"10.46298/cm.10135","DOIUrl":null,"url":null,"abstract":"In the present paper we consider a family of non-Volterra quadratic\nstochastic operators depending on a parameter $\\alpha$ and study their\ntrajectory behaviors. We find all fixed points for a non-Volterra quadratic\nstochastic operator on a finite-dimensional simplex. We construct some Lyapunov\nfunctions. A complete description of the set of limit points is given, and we\nshow that such operators have the ergodic property.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A family of non-Volterra quadratic operators corresponding to permutations\",\"authors\":\"U. Jamilov\",\"doi\":\"10.46298/cm.10135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper we consider a family of non-Volterra quadratic\\nstochastic operators depending on a parameter $\\\\alpha$ and study their\\ntrajectory behaviors. We find all fixed points for a non-Volterra quadratic\\nstochastic operator on a finite-dimensional simplex. We construct some Lyapunov\\nfunctions. A complete description of the set of limit points is given, and we\\nshow that such operators have the ergodic property.\",\"PeriodicalId\":37836,\"journal\":{\"name\":\"Communications in Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/cm.10135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.10135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了一类依赖于参数$\ α $的非volterra二次随机算子,并研究了它们的轨迹行为。我们找到了有限维单纯形上非volterra二次随机算子的所有不动点。我们构造一些李雅普诺夫函数。给出了极限点集的完整描述,并证明了这种算子具有遍历性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A family of non-Volterra quadratic operators corresponding to permutations
In the present paper we consider a family of non-Volterra quadratic stochastic operators depending on a parameter $\alpha$ and study their trajectory behaviors. We find all fixed points for a non-Volterra quadratic stochastic operator on a finite-dimensional simplex. We construct some Lyapunov functions. A complete description of the set of limit points is given, and we show that such operators have the ergodic property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematics
Communications in Mathematics Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
26
审稿时长
45 weeks
期刊介绍: Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信