{"title":"有限拓扑型曲面上的圆模式","authors":"Huabin Ge, B. Hua, Ze‐hua Zhou","doi":"10.2140/pjm.2020.306.203","DOIUrl":null,"url":null,"abstract":"Abstract:This paper investigates circle patterns with obtuse exterior intersection angles on surfaces of finite topological type. We characterise the images of the curvature maps and establish several equivalent conditions regarding long time behaviors of Chow-Luo's combinatorial Ricci flows for these patterns. As consequences, several generalizations of circle pattern theorem are obtained. Moreover, our approach suggests a computational method to find the desired circle patterns.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"143 1","pages":"1397 - 1430"},"PeriodicalIF":1.7000,"publicationDate":"2019-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/pjm.2020.306.203","citationCount":"8","resultStr":"{\"title\":\"Circle patterns on surfaces of finite topological type\",\"authors\":\"Huabin Ge, B. Hua, Ze‐hua Zhou\",\"doi\":\"10.2140/pjm.2020.306.203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract:This paper investigates circle patterns with obtuse exterior intersection angles on surfaces of finite topological type. We characterise the images of the curvature maps and establish several equivalent conditions regarding long time behaviors of Chow-Luo's combinatorial Ricci flows for these patterns. As consequences, several generalizations of circle pattern theorem are obtained. Moreover, our approach suggests a computational method to find the desired circle patterns.\",\"PeriodicalId\":7453,\"journal\":{\"name\":\"American Journal of Mathematics\",\"volume\":\"143 1\",\"pages\":\"1397 - 1430\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2019-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/pjm.2020.306.203\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2020.306.203\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2020.306.203","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Circle patterns on surfaces of finite topological type
Abstract:This paper investigates circle patterns with obtuse exterior intersection angles on surfaces of finite topological type. We characterise the images of the curvature maps and establish several equivalent conditions regarding long time behaviors of Chow-Luo's combinatorial Ricci flows for these patterns. As consequences, several generalizations of circle pattern theorem are obtained. Moreover, our approach suggests a computational method to find the desired circle patterns.
期刊介绍:
The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.